Share:
Share this content in WeChat
X
Clinical Article
Application of MOLLI T1 mapping quantitative technology in the assessment of pediatric brain development
YANG Xue  JIA Fenglin  MA Xinmao  LI Xuesheng  LI Pei  ZHANG Lu  LIAO Yi  NING Gang  QU Haibo 

Cite this article as: YANG X, JIA F L, MA X M, et al. Application of MOLLI T1 mapping quantitative technology in the assessment of pediatric brain development[J]. Chin J Magn Reson Imaging, 2024, 15(11): 32-38. DOI:10.12015/issn.1674-8034.2024.11.006.


[Abstract] Objective To explore the value of the modified Look-Locker inversion recovery (MOLLI) T1 mapping quantitative technique in evaluating the development of brain in children quantitatively.Materials and Methods Fifty-three children with normal head magnetic resonance imaging results were included, and optimized MOLLI and magnetization prepared 2 rapid acquisition gradient echoes (MP2RAGE) sequences were used to perform T1 mapping quantitative analysis on 36 brain regions of each subject. We evaluate the consistency of T1 values in each brain region obtained from two sequences, compared the differences in T1 values in each brain region of the two sequences, and analyze the correlation between T1 values in each brain region of the two sequences and age.Results The intraclass correlation co-efficient (ICC) for the MOLLI sequence and MP2RAGE sequence in all brain regions were greater than 0.8 (P<0.001), except for the bilateral dorsal pontine and cerebral peduncle. The differences in T1 values between the two sequences in each brain region were statistically significant (P<0.05, FDR-corrected), the T1 values in each brain region of the MOLLI group were higher than those in the MP2RAGE group. The T1 values of each brain region in both sequences were negatively correlated with age (P<0.001).Conclusions The optimized MOLLI sequence can be used for the quantitative evaluation of brain development in children, showing good consistency with MP2RAGE sequence, and accurately quantifying T1 values of brain regions, providing a new sequence selection for the study of the nervous system of fetuses and children.
[Keywords] brain development;children;magnetic resonance imaging;modified Look-Locker inversion recover sequence;T1 mapping;myelin sheath

YANG Xue1   JIA Fenglin1   MA Xinmao1   LI Xuesheng1   LI Pei1   ZHANG Lu2   LIAO Yi1   NING Gang1   QU Haibo1*  

1 Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu610041, China

2 Department of Operation Management and Evaluation, West China Second University Hospital, Sichuan University, Chengdu610041, China

Corresponding author: QU H B, E-mail: windowsqhb@126.com

Conflicts of interest   None.

Received  2023-12-20
Accepted  2024-10-11
DOI: 10.12015/issn.1674-8034.2024.11.006
Cite this article as: YANG X, JIA F L, MA X M, et al. Application of MOLLI T1 mapping quantitative technology in the assessment of pediatric brain development[J]. Chin J Magn Reson Imaging, 2024, 15(11): 32-38. DOI:10.12015/issn.1674-8034.2024.11.006.

[1]
DUBOIS J, DEHAENE-LAMBERTZ G, KULIKOVA S, et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants[J]. Neuroscience, 2014, 276: 48-71. DOI: 10.1016/j.neuroscience.2013.12.044.
[2]
LUO M F, SUN Z B, RONG K, et al. Principle and research progress of quantitative magnetic resonance imaging[J]. Journal of Molecular Imaging, 2020, 43(4): 572-576. DOI: 10.12122/j.issn.1674-4500.2020.04.04.
[3]
SHAH N J, NEEB H, ZAITSEV M, et al. Quantitative T1 mapping of hepatic encephalopathy using magneticr esonance imaging[J]. Hepatology, 2003, 38(5): 1219-1226. DOI: 10.1053/jhep.2003.50477.
[4]
KOLB H, ABSINTA M, BECK E S, et al. 7T MRI differentiates remyelinated from demyelinated multiple sclerosis lesions[J]. Annals of Neurology, 2021, 90(4): 612-626. DOI: 10.1002/ana.26194.
[5]
CHILDS A M, RAMENGHI L A, CORNETTE L, et al. Cerebral maturation in premature infants: quantitative assessment using MR imaging[J]. AJNR Am J Neuroradiol, 2001, 22(8): 1577-1582.
[6]
FATOUROS P P, MARMAROU A, KRAFT K A, et al. In vivo brain water determination by t1 measurements: effect of total water content, hydration fraction, and field strength[J]. Magn Reson Med, 1991, 17(2): 402-413. DOI: 10.1002/mrm.1910170212.
[7]
MESSROGHLI D R, PLEIN S, HIGGINS D M, et al. Human myocardium: single-breath-hold mr t1 mapping with high spatial resolution--reproducibility study[J]. Radiology, 2006, 238(3): 1004-1012. DOI: 10.1148/radiol.2382041903.
[8]
MESSROGHLI D R, GREISER A, FRÖHLICH M, et al. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart[J]. J Magn Reson Imaging, 2007, 26(4): 1081-1086. DOI: 10.1002/jMRI.21119.
[9]
JIA F, LIAO Y, LI X, et al. Preliminary study on quantitative assessment of the fetal brain using MOLLI T1 mapping sequence[J]. J Magn Reson Imaging, 2022, 56(5): 1505-1512. DOI: 10.1002/jMRI.28195.
[10]
MARQUES J P, KOBER T, KRUEGER G, et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field[J]. NeuroImage, 2010, 49(2): 1271-1281. DOI: 10.1016/j.neuroimage.2009.10.002.
[11]
SCHMARANZER F, AFACAN O, LERCH T D, et al. Magnetization-prepared 2 rapid gradient-echo MRI for b1 insensitive 3D T1 mapping of hip cartilage: an experimental and clinical validation[J]. Radiology, 2021, 299(1): 150-158. DOI: 10.1148/radiol.2021200085.
[12]
EMINIAN S, HAJDU S D, MEULI R A, et al. Rapid high resolution T1 mapping as a marker of brain development: Normative ranges in key regions of interest[J/OL]. PloS One, 2018, 13(6): e0198250 [2023-12-20]. https://pubmed.ncbi.nlm.nih.gov/29902203/. DOI: 10.1371/journal.pone.0198250.
[13]
LEE S M, CHOI Y H, YOU S K, et al. Age-related changes in tissue value properties in children: Simultaneous quantification of relaxation times and proton density using synthetic magnetic resonance imaging[J]. Invest Radiol, 2018, 53(4): 236-245. DOI: 10.1097/RLI.0000000000000435.
[14]
GRÄFE D, FRAHM J, MERKENSCHLAGER A, et al. Quantitative T1 mapping of the normal brain from early infancy to adulthood[J]. Pediatric Radiology, 2021, 51(3): 450-456. DOI: 10.1007/s00247-020-04842-7.
[15]
GIRARD N, RAYBAUD C, PONCET M. In vivo mr study of brain maturation in normal fetuses[J]. AJNR Am J Neuroradiol, 1995, 16(2): 407-413.

PREV Study on brain microstructure in patients with white matter hyperintensities and depressive symptoms based on multimodal MRI
NEXT Clinical study of hippocampal microstructure in patients with cognitive impairment of temporal lobe epilepsy by NODDI technique
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn