Share:
Share this content in WeChat
X
Clinical Article
Clinical study of hippocampal microstructure in patients with cognitive impairment of temporal lobe epilepsy by NODDI technique
YANG Wenrui  WANG Xucong  LI Jian  SONG Dengyan  WANG Zhuo  CHEN Bing 

Cite this article as: YANG W R, WANG X C, LI J, et al. Clinical study of hippocampal microstructure in patients with cognitive impairment of temporal lobe epilepsy by NODDI technique[J]. Chin J Magn Reson Imaging, 2024, 15(11): 39-43. DOI:10.12015/issn.1674-8034.2024.11.007.


[Abstract] Objective To explore the changes of hippocampal microstructure in patients with cognitive impairment of temporal lobe epilepsy (TLE-CI) and normal temporal lobe epilepsy (TLE-CN) by neurite orientation dispersion and density imagin (NODDI), and to explore the relationship between hippocampal microstructure and clinical features.Materials and Methods The head MRI of 35 cases of TLE-CI, 31 cases of TLE-CN and 40 cases of healthy controls (HC) were analyzed. MRtrix3 was used to calculate the fraction of the isotropic diffusion compartment (fiso), orientation dispersion index (ODI) and neurite density index (NDI) of NODDI images. Then superimposed with the structure image after FreeSurfer segmentation, the NODDI index values of the hippocampus were obtained. The differences of NODDI indexes among the three groups of participants were compared, and the correlation between the difference indexes and the clinical characteristics of patients was analyzed.Results The fiso value of ipsilateral and contralateral hippocampus in TLE-CI group was significantly higher than that in HC group (P=0.004, P=0.017), but there was no significant difference in ODI value between groups. The NDI value of ipsilateral hippocampus in the TLE-CI group was significantly lower than that in the HC group (P<0.001), while the NDI value of the affected hippocampus in the TLE-CN group was significantly lower than that in the HC group (P=0.004). In TLE-CI group, the NDI value of ipsilateral hippocampus was positively correlated with the age of onset (r=0.491, P=0.003) and negatively correlated with the course of disease (r=-0.424, P=0.011).Conclusions This study shows the ability of NODDI to detect the microstructural changes of hippocampus in patients with temporal lobe epilepsy. Among them, NDI may be a sensitive and progressive biomarker in patients with TLE-CI.
[Keywords] temporal lobe epilepsy;cognitive impairment;magnetic resonance imaging;directional dispersion and density imaging of neurite;neurite density index;orientation dispersion index;free-water isotropic volume fraction

YANG Wenrui1   WANG Xucong1   LI Jian1   SONG Dengyan1, 2   WANG Zhuo1, 2   CHEN Bing1*  

1 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan750004, China

2 School of the First Clinical Medicine, Ningxia Medical University, Yinchuan750004, China

Corresponding author: CHEN B, E-mail: chenbing135501@163.com

Conflicts of interest   None.

Received  2024-05-27
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.11.007
Cite this article as: YANG W R, WANG X C, LI J, et al. Clinical study of hippocampal microstructure in patients with cognitive impairment of temporal lobe epilepsy by NODDI technique[J]. Chin J Magn Reson Imaging, 2024, 15(11): 39-43. DOI:10.12015/issn.1674-8034.2024.11.007.

[1]
GALOVIC M, VAN DOOREN V Q H, POSTMA T S, et al. Progressive cortical thinning in patients with focal epilepsy[J]. JAMA Neurol, 2019, 76(10): 1230-1239. DOI: 10.1001/jamaneurol.2019.1708.
[2]
LAURENT A, ARTIGES E, MELLERIO C, et al. Metabolic correlates of cognitive impairment in mesial temporal lobe epilepsy[J/OL]. Epilepsy Behav, 2020, 105: 106948 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/32062107/. DOI: 10.1016/j.yebeh.2020.106948.
[3]
HELMSTAEDTER C, ELGER C E. Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease?[J]. Brain, 2009, 132(Pt 10): 2822-2830. DOI: 10.1093/brain/awp182.
[4]
RODRÍGUEZ-CRUCES R, BERNHARDT B C, CONCHA L. Multidimensional associations between cognition and connectome organization in temporal lobe epilepsy[J/OL]. Neuroimage, 2020, 213: 116706 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/32151761/. DOI: 10.1016/j.neuroimage.2020.116706.
[5]
LARIVIÈRE S, RODRÍGUEZ-CRUCES R, ROYER J, et al. Network-based atrophy modeling in the common epilepsies: a worldwide ENIGMA study[J/OL]. Sci Adv, 2020, 6(47): eabc6457 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/33208365/. DOI: 10.1126/sciadv.abc6457.
[6]
IVES-DELIPERI V, BUTLER J T. Mechanisms of cognitive impairment in temporal lobe epilepsy: a systematic review of resting-state functional connectivity studies[J/OL]. Epilepsy Behav, 2021, 115: 107686 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/33360743/. DOI: 10.1016/j.yebeh.2020.107686.
[7]
WANG X S, LI Y H, LI M H, et al. Effects of anti-seizure medications on cognitive function[J]. Chin J Neurol, 2023, 56(11): 1213-1216. DOI: 10.3760/cma.j.cn113694-20230523-00360.
[8]
AZAD A, CABEEN R P, SEPEHRBAND F, et al. Microstructural properties within the amygdala and affiliated white matter tracts across adolescence[J/OL]. Neuroimage, 2021, 243: 118489 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/34450260/. DOI: 10.1016/j.neuroimage.2021.118489.
[9]
SCHILLING K G, BY S, FEILER H R, et al. Diffusion MRI microstructural models in the cervical spinal cord-Application, normative values, and correlations with histological analysis[J/OL]. Neuroimage, 2019, 201: 116026 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/31326569/. DOI: 10.1016/j.neuroimage.2019.116026.
[10]
KRAGULJAC N V, GUERRERI M, STRICKLAND M J, et al. Neurite orientation dispersion and density imaging in psychiatric disorders: a systematic literature review and a technical note[J]. Biol Psychiatry Glob Open Sci, 2022, 3(1): 10-21. DOI: 10.1016/j.bpsgos.2021.12.012.
[11]
KAMIYA K, HORI M, AOKI S. NODDI in clinical research[J/OL]. J Neurosci Methods, 2020, 346: 108908 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/32814118/. DOI: 10.1016/j.jneumeth.2020.108908.
[12]
GIACHETTI I, PADELLI F, AQUINO D, et al. Role of NODDI in the MRI characterization of hippocampal abnormalities in temporal lobe epilepsy: clinico-histopathologic correlations[J/OL]. Neurology, 2022, 98(17): e1771-e1782 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/35256485/. DOI: 10.1212/WNL.0000000000200140.
[13]
FISHER R S. The new classification of seizures by the international league against epilepsy 2017[J/OL]. Curr Neurol Neurosci Rep, 2017, 17(6): 48 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/28425015/. DOI: 10.1007/s11910-017-0758-6.
[14]
FISCHL B, SALAT D H, BUSA E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain[J]. Neuron, 2002, 33(3): 341-355. DOI: 10.1016/s0896-6273(02)00569-x.
[15]
TOURNIER J D, SMITH R, RAFFELT D, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation[J/OL]. NeuroImage, 2019, 202: 116137 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/31473352/. DOI: 10.1016/j.neuroimage.2019.116137.
[16]
PINHEIRO M L, YATABE M, IOSHIDA M, et al. Volumetric reconstruction and determination of minimum crosssectional area of the pharynx in patients with cleft lip and palate: comparison between two different softwares[J/OL]. J Appl Oral Sci, 2018, 26: e20170282 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/30304121/. DOI: 10.1590/1678-7757-2017-0282.
[17]
COSTA B S, SANTOS M C V, ROSA D V, et al. Automated evaluation of hippocampal subfields volumes in mesial temporal lobe epilepsy and its relationship to the surgical outcome[J/OL]. Epilepsy Res, 2019, 154: 152-156 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/31153103/. DOI: 10.1016/j.eplepsyres.2019.05.011.
[18]
ADAM C, HASBOUN D, CLEMENCEAU S, et al. Fast contralateral propagation of after-discharges induced by stimulation of medial temporal lobe[J]. J Clin Neurophysiol, 2004, 21(6): 399-403. DOI: 10.1097/01.wnp.0000148129.37206.33.
[19]
HOPPE C, ELGER C E, HELMSTAEDTER C. Long-term memory impairment in patients with focal epilepsy[J]. Epilepsia, 2007, 48(Suppl 9): 26-29. DOI: 10.1111/j.1528-1167.2007.01397.x.
[20]
WEI Z H, WANG H, JU C, et al. A study on the microstructure of hippocampus in Alzheimer's disease and amnestic mild cognitive impairment based on NODDI[J]. Chin J Magn Reson Imag, 2022, 13(2): 26-30, 36. DOI: 10.12015/issn.1674-8034.2022.02.006.
[21]
MA P C, CUI S L, WANG J, et al. Magnetic resonance voxel analysis and diffusion kurtosis imaging of medial temporal lobe in patients with temporal lobe epilepsy and cognitive impairment[J]. Chin J Magn Reson Imag, 2023, 14(2): 1-5, 20. DOI: 10.12015/issn.1674-8034.2023.02.001.
[22]
RODRÍGUEZ-CRUCES R, VELÁZQUEZ-PÉREZ L, RODRÍGUEZ- LEYVA I, et al. Association of white matter diffusion characteristics and cognitive deficits in temporal lobe epilepsy[J/OL]. Epilepsy Behav, 2018, 79: 138-145 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/29287217/. DOI: 10.1016/j.yebeh.2017.11.040.
[23]
STASENKO A, LIN C, BONILHA L, et al. Neurobehavioral and clinical comorbidities in epilepsy: the role of white matter network disruption[J]. Neuroscientist, 2024, 30(1): 105-131. DOI: 10.1177/10738584221076133.
[24]
SEYEDMIRZAEI H, NABIZADEH F, AARABI M H, et al. Neurite orientation dispersion and density imaging in multiple sclerosis: a systematic review[J]. J Magn Reson Imaging, 2023, 58(4): 1011-1029. DOI: 10.1002/jmri.28727.
[25]
LYNCH K M, CABEEN R P, TOGA A W, et al. Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI[J/OL]. NeuroImage, 2020, 212: 116672 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/32092432/. DOI: 10.1016/j.neuroimage.2020.116672.
[26]
SANTANGELO G, TROJANO L, VITALE C, et al. Cognitive dysfunctions in occipital lobe epilepsy compared to temporal lobe epilepsy[J]. J Neuropsychol, 2017, 11(2): 277-290. DOI: 10.1111/jnp.12085.
[27]
REYES A, KAESTNER E, BAHRAMI N, et al. Cognitive phenotypes in temporal lobe epilepsy are associated with distinct patterns of white matter network abnormalities[J/OL]. Neurology, 2019, 92(17): e1957-e1968 [2024-05-26]. https://pubmed.ncbi.nlm.nih.gov/30918094/. DOI: 10.1212/WNL.0000000000007370.
[28]
LUCAS A, REVELL A, DAVIS K A. Artificial intelligence in epilepsy-applications and pathways to the clinic[J]. Nat Rev Neurol, 2024, 20(6): 319-336. DOI: 10.1038/s41582-024-00965-9.
[29]
TRIMMEL K, VOS S B, CACIAGLI L, et al. Decoupling of functional and structural language networks in temporal lobe epilepsy[J]. Epilepsia, 2021, 62(12): 2941-2954. DOI: 10.1111/epi.17098.

PREV Application of MOLLI T1 mapping quantitative technology in the assessment of pediatric brain development
NEXT Research on the white matter microstructural changes in boys with enuresis using diffusion kurtosis imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn