Share:
Share this content in WeChat
X
Clinical Article
Research on the white matter microstructural changes in boys with enuresis using diffusion kurtosis imaging
YANG Zijian  MA Jun  DU Xiaoxia  LIN Xindi  CHEN Qun  WANG Mengxing 

Cite this article as: YANG Z J, MA J, DU X X, et al. Research on the white matter microstructural changes in boys with enuresis using diffusion kurtosis imaging[J]. Chin J Magn Reson Imaging, 2024, 15(11): 44-50. DOI:10.12015/issn.1674-8034.2024.11.008.


[Abstract] Objective Using the tract-based spatial statistics (TBSS) method based on diffusion kurtosis imaging (DKI) technology to explore the changes in brain white matter structure of boys with primary nocturnal enuresis and its correlation with child behavior scales.Materials and Methods MR DKI scans were conducted on 25 enuresis male patients with NE (NE group) and 24 age, gender, and education matched healthy control (HC group). The mean diffusivity (MD), mean kurtosis (MK), and axial kurtosis (AK) values of brain regions with statistical significance were determined, and Spearman correlation analysis was performed to explore the relationship between the MD, AK, and MK values in the different brain regions and children's behavioral performance.Results Compared with the HC group, the NE group showed significantly increased MK values in the right preoptic tract, bilateral corticospinal tract (P<0.05); There is a significant increase in the AK value in the right lower longitudinal bundle, the left corticospinal tract, the right inferior fronto-occipital fasciculus, and the large claw (P<0.05); and a significant decrease in the MD value in the right anterior thalamic radiation, as well as in the bilateral lower longitudinal bundles, bilateral corticospinal tracts, and left anterior thalamic radiation (P<0.05). Correlation analysis revealed that the scores of the Children's Behavior Checklist (CBCL) were positively correlated with the MK and MD values of the right corticospinal tract and the right lower longitudinal bundle. The scores of the Children's Sleep Habits Questionnaire (CSHQ) were positively correlated with the MD values of the right lower longitudinal bundle, the right anterior thalamic radiation, and the left lower longitudinal bundle.Conclusions DKI technology can detect white matter structure alterations in NE patients, and the changes in white matter structure in the different brain regions are associated with the CBCL and CSHQ.
[Keywords] enuresis;diffusion kurtosis imaging technology;tract-based spatial statistics;brain white matter structure;Children's Behavior Checklist

YANG Zijian1   MA Jun3   DU Xiaoxia4   LIN Xindi3   CHEN Qun1   WANG Mengxing2*  

1 School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai200093, China

2 School of Medical Imaging, Shanghai University of Medicine & Health Sciences, Shanghai200237, China

3 Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai200127, China

4 School of Psychology, Shanghai University of Sport, Shanghai200003, China

Corresponding author: WANG M X, E-mail: wmxing90@163.com

Conflicts of interest   None.

Received  2024-06-13
Accepted  2024-11-10
DOI: 10.12015/issn.1674-8034.2024.11.008
Cite this article as: YANG Z J, MA J, DU X X, et al. Research on the white matter microstructural changes in boys with enuresis using diffusion kurtosis imaging[J]. Chin J Magn Reson Imaging, 2024, 15(11): 44-50. DOI:10.12015/issn.1674-8034.2024.11.008.

[1]
WANG X Z, WEN Y B, SHANG X P, et al. The influence of delay elimination communication on the prevalence of primary nocturnal enuresis-a survey from Mainland China[J]. Neurourol Urodyn, 2019, 38(5): 1423-1429. DOI: 10.1002/nau.24002.
[2]
AUSTIN P F, BAUER S B, BOWER W, et al. The standardization of terminology of lower urinary tract function in children and adolescents: Update report from the standardization committee of the International Children's Continence Society[J]. Neurourol Urodyn, 2016, 35(4): 471-481. DOI: 10.1002/nau.22751.
[3]
ZHAO Y, MAO Q F, HU H J, et al. Study on emotional and behavioral problems and related factors in children and adolescents with nocturnal enuresis[J]. Practical Preventive Medicine, 2022, 29(8): 939-943. DOI: 10.3069/j.issn.1006-3110.2022.08.010.
[4]
BERHANU T, ABERA M, GIRMA S, et al. Elimination disorders and associated factors among children and adolescents age5-14 year-old attending paediatric outpatient clinic at Wolaita Sodo University comprehensive specialized hospital, South Ethiopia[J/OL]. Child Adolesc Psychiatry Ment Health, 2024, 18(1): 52 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/38702758/. DOI: 10.1186/s13034-024-00739-7.
[5]
ZENG C, FANG M D, SU X L, et al. Research progress on the pathogenesis of primary nocturnal enuresis in children[J]. Chinese Journal of Integrated Traditional and Western Pediatrics, 2020, 12(6): 487-491. DOI: 10.3969/j.issn.1674-3865.2020.06.005.
[6]
JOINSON C, GRZEDA M T, HERON J, et al. Sleep duration, sleep problems and developmental trajectories of urinary incontinence: a prospective cohort study[J/OL]. Eur Child Adolesc Psychiatry, 2024 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/38831062/. DOI: 10.1007/s00787-024-02471-1.
[7]
KATOKU-KIKYO N, PAATELA E, HOUTZ D L, et al. Per1/Per2-Igf2 axis-mediated circadian regulation of myogenic differentiation[J/OL]. J Cell Biol, 2021, 5, 220(7): e202101057 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/34009269/. DOI: 10.1083/jcb.202101057.
[8]
BERGAMINO M, KEELING E, MCELVOGUE M, et al. White matter microstructure analysis in subjective memory complaints and cognitive impairment: Insights from diffusion kurtosis imaging and free-water DTI[J]. J Alzheimers Dis, 2024, 98(3): 863-884. DOI: 10.3233/JAD-230952.
[9]
ZHANG J H, LANG N, YUAN H S. Clinical research progress of diffusion kurtosis imaging[J]. Chin J Magn Reson Imag, 2018, 9(4): 316-320. DOI: 10.3969/j.issn.1006-3110.2022.08.010.
[10]
ZHANG R, BAI Y, WEI W, et al. Basic principles of intravoxel incoherent motion imaging and diffusion kurtosis imaging and their applications in central nervous system diseases[J]. Chin J Magn Reson Imag, 2020, 11(9): 804-808. DOI: 10.12015/issn.1674-8034.2020.09.019.
[11]
VAN DER WEIJDEN C W, VAN DER HOORN A, POTZE J H, et al. Diffusion-derived parameters in lesions, peri-lesion and normal-appearing white matter in multiple sclerosis using tensor, kurtosis and fixel-based analysis[J]. J Cereb Blood Flow Metab, 2022, 42(11): 2095-2106. DOI: 10.1177/0271678X221107953.
[12]
CAI W D, ZHOU H H, LIN W, et al. Study on the diagnostic and therapeutic value of low frequency amplitude in resting-state functional magnetic resonance imaging of children with enuresis of different genders[J]. Chinese Journal of Maternal and Child Health Care, 2020, 35(19): 3693-3695. DOI: 10.19829/j.zgfybj.issn.1001-4411.2020.19.055.
[13]
ZHU L, WANG Y Q, ZHANG A Q, et al. Survey on the risk factors for the onset of single-symptom primary nocturnal enuresis in 5-17 year old children in harbin city[J]. Chinese Journal of Maternal and Child Health Care, 2021, 36(23): 5499-5502. DOI: 10.19829/j.zgfybj.issn.1001-4411.2021.23.042.
[14]
WANG Z J, SHEN X Y, YIN L, et al. Epidemiological survey of nocturnal enuresis in children and adolescents aged 5-18 years in pudong new area of Shanghai[J]. Chinese Journal of General Practice, 2023, 21(7): 1220-1223. DOI: 10.16766/j.cnki.issn.1674-4152.003088.
[15]
GAO Y J, LIU X M, WANG J, et al. Analysis of sleep status in children with primary enuresis[J]. Beijing Medicine, 2021, 43(11): 1070-1075. DOI: 10.15932/j.0253-9713.2021.11.007.
[16]
ZHENG X, SUN J, LV Y, et al. Frequency-specific alterations of the resting-state BOLD signals in nocturnal enuresis: an fMRI Study[J/OL]. Sci Rep, 2021, 11(1): 12042 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/34103549/. DOI: 10.1038/s41598-021-90546-3.
[17]
LI J, ZHANG Y, CHEN J, et al. Abnormal microstructure of corpus callosum in children with primary nocturnal enuresis: a DTI study[J/OL]. Eur Child Adolesc Psychiatry, 2024 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/38514474/. DOI: 10.1007/s00787-024-02416-8.
[18]
CICERI T, DE LUCA A, AGARWAL N, et al. A framework for optimizing the acquisition protocol multishell diffusion-weighted imaging for multimodel assessment[J/OL]. NMR Biomed, 2024, 37(8): e5141 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/38520215/. DOI: 10.1002/NBM.5141.
[19]
HATTORI A, KAMAGATA K, KIRINO E, et al. White matter alterations in adult with autism spectrum disorder evaluated using diffusion kurtosis imaging[J]. Neuroradiology, 2019, 61(12): 1343-1353. DOI: 10.1007/s00234-019-02238-5.
[20]
OUYANG M, DUBOIS J, YU Q, et al. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond[J]. NeuroImage, 2019, 185: 836-850. DOI: 10.1016/j.neuroimage.2018.04.017.
[21]
ZHANG N, PENG K, GUO J X, et al. Microstructural brain abnormalities and associated neurocognitive dysfunction in obstructive sleep apnea: a pilot study with diffusion kurtosis imaging[J]. Clin Sleep Med, 2024, 20(10): 1571-1578 . DOI: 10.5664/JCSM.11184.
[22]
OUYANG M, JEON T, SOTIRAS A, et al. Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging[J]. Proc Natl Acad Sci U S A2019, 116(10): 4681-4688. DOI: 10.1073/pnas.1812156116.
[23]
HU W, QIU Z, HUANG Q, et al. Microstructural changes of the white matter in systemic lupus erythematosus patients without neuropsychiatric symptoms: a multi-shell diffusion imaging study[J/OL]. Arthritis Res Ther, 2024, 26(1): 110 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/38807248/. DOI: 10.1186/S13075-024-03344-3.
[24]
AHMADI K, PEREIRA J B, VAN WESTEN D, et al. Fixel-based analysis reveals tau-related white matter changes in early stages of Alzheimer's disease[J/OL]. J Neurosci, 2024, 44(18): e0538232024 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/38565289/. DOI: 10.1523/JNEUROSCI.0538-23.2024.
[25]
TANG S, NIE L, LIU X, et al. Application of quantitative magnetic resonance imaging in the diagnosis of autism in children[J/OL]. Front Med (Lausanne), 2022, 9: 818404 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/35646984/. DOI: 10.3389/FMED.2022.818404.
[26]
LEI D, MA J, SHEN X, et al. Changes in the brain microstructure of children with primary monosymptomatic nocturnal enuresis: a diffusion tensor imaging study[J/OL]. PLoS One, 2012, 7(2): e31023 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/22363538/. DOI: 10.1371/journal.pone.0031023.
[27]
FOCKE N K, YOGARAJAH M, BONELLI S B, et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis[J]. Neuroimage, 2008, 40(2): 728-737. DOI: 10.1016/j.neuroimage.2007.12.031.
[28]
BUKHARI Q, RUF S F, GUELL X, et al. Interaction between cerebellum and cerebral cortex, evidence from dynamic causal modeling[J]. Cerebellum, 2021, 21(2): 1-9. DOI: 10.1007/S12311-021-01284-1.
[29]
ZHANG A, ZHANG L, WANG M, et al. Functional connectivity of thalamus in children with primary nocturnal enuresis: results from a resting-state fMRI study[J]. Brain Imaging Behav, 2020, 15(1): 1-9. DOI: 10.1007/s11682-020-00262-1.
[30]
SUN H, XUE B, PENG M, et al. Abnormal neurite orientation dispersion and density imaging of white matter in children with primary nocturnal enuresis[J/OL]. Neuroimage Clin, 2020, 28: 102389 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/32911428/. DOI: 10.1016/j.nicl.2020.102389.
[31]
ZHU W. Functional brain connectivity magnetic resonance imaging and urodynamic study in children with primary monosymptom enuresis[D]. Zhengzhou: Zhengzhou University, 2020. DOI: 10.27466/d.cnki.gzzdu.2020.000033.
[32]
CHEN P, YE E, JIN X, et al. Association between thalamocortical functional connectivity abnormalities and cognitive deficits in schizophrenia[J/OL]. Sci Rep, 2019, 9(1): 2952 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/30814558/. DOI: 10.1038/s41598-019-39367-z.
[33]
YU B, XIAO S, YOU Y, et al. Abnormal thalamic functional connectivity during light non-rapid eye movement sleep in children with primary nocturnal enuresis[J/OL]. J Am Acad Child Adolesc Psychiatry, 2020, 59(5): 660-670.e2 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/31220550/. DOI: 10.1016/j.jaac.2019.05.028.
[34]
DAI J F, WANG L Z, HAN Q, et al. The role of corticospinal motor neuron synaptic input reorganization after spinal cord injury[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(25): 4054-4059. DOI: 10.12307/2024.175.
[35]
PAN X F, LEI X Y, LIN G M, et al. A study on psychological and behavioral problems and related factors in children with primary enuresis aged 6-11 years[J]. Chinese Journal of Child Health Care, 2016, 24(5): 525-528. DOI: 10.11852/zgetbjzz2016-24-05-24.

PREV Clinical study of hippocampal microstructure in patients with cognitive impairment of temporal lobe epilepsy by NODDI technique
NEXT Prediction of adult-type diffuse gliomas IDH phenotype through an ensemble machine learning model with integrating of MRI visual and DTI histogram
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn