Share:
Share this content in WeChat
X
Clinical Article
The value of synthetic MRI combined with amide proton transfer imaging in projecting IDH1 gene state in gliomas
SUN Meng  MA Wenfu  GE Xin  JIN Yixuan  NIU Fang  DANG Pei  ZHOU Jiaxin  WANG Xiaodong 

Cite this article as: SUN M, MA W F, GE X, et al. The value of synthetic MRI combined with amide proton transfer imaging in projecting IDH1 gene state in gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(11): 60-66, 109. DOI:10.12015/issn.1674-8034.2024.11.010.


[Abstract] Objective To explore the value of synthetic magnetic resonance imaging (syMRI) combined with amide proton transfer (APT) in projecting the isocitrate dehydrogenase 1 (IDH1) gene status in gliomas.Materials and Methods A retrospective analysis was performed on 97 patients diagnosed with glioma with complete pathological data at the General Hospital of Ningxia Medical University from July 2019 to December 2023, including 57 cases of IDH1 mutant (IDH1-mut) and 40 cases of IDH1 wildtype (IDH1-wt), all of whom underwent preoperative pre- and post-contrast syMRI and APT scans, and their quantitative parameters T1-pre, T2-pre, T1-post, T2-post and APT values were measured. Independent samples t-tests or Mann-Whitney U-tests were used to analyse the differences between groups for each parameter, and the diagnostic efficacy of each single and combined parameter for IDH1 gene status was assessed using subject operating characteristic curves and binary logistic regression analyses. The DeLong test was used to compare the differences in AUC for each parameter.Results APT values and T1-pre were higher in IDH1-wt than in IDH1-mut gliomas (P<0.05); T1-pre and T2-pre were lower in IDH1-wt gliomas than in IDH1-mut gliomas (P<0.01); and T2-pre was not statistically significant between the two groups (P=0.107). Among all single parameters, the APT value had the highest diagnostic efficacy for IDH1-mut versus IDH1-wt glioma, with an AUC of 0.867, which was higher than that of T1-pre, T1-post, and T2-post (AUC 0.620, 0.811, and 0.723); the AUC of the multi-parameter combined prediction model (T1-pre+T1-post+T2-post +APT) had an AUC of 0.886, a sensitivity of 80.7%, and a specificity of 85.0%, which was higher than that of any single parameter. The DeLong test showed that the diagnostic efficacy of the multi-parameter combined prediction model was superior to the T1-pre, T1-post, and T2-post values (P<0.05), whereas there was no significant difference in the AUC with APT (P=0.208).Conclusions syMRI combined with APT is useful for preoperative noninvasive prediction of IDH1 gene status in gliomas, and the highest efficacy was achieved when the two were used in combination for diagnosis.
[Keywords] glioma;magnetic resonance imaging;synthetic magnetic resonance imaging;amide proton transfer imaging;isocitrate dehydrogenase 1;prediction

SUN Meng1   MA Wenfu1   GE Xin2   JIN Yixuan1   NIU Fang1   DANG Pei3   ZHOU Jiaxin1   WANG Xiaodong3, 4*  

1 Clinical Medical College, Ningxia Medical University, Yinchuan750004, China

2 The Second Clinical Medical College of Lanzhou University, Lanzhou730030, China

3 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan750004, China

4 Key Laboratory of Craniofacial Diseases, Ningxia Medical University, Yinchuan750004, China

Corresponding author: WANG X D, E-mail: xdw80@yeah.net

Conflicts of interest   None.

Received  2024-04-22
Accepted  2024-10-11
DOI: 10.12015/issn.1674-8034.2024.11.010
Cite this article as: SUN M, MA W F, GE X, et al. The value of synthetic MRI combined with amide proton transfer imaging in projecting IDH1 gene state in gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(11): 60-66, 109. DOI:10.12015/issn.1674-8034.2024.11.010.

[1]
PELLERINO A, CACCESE M, PADOVAN M, et al. Epidemiology, risk factors, and prognostic factors of gliomas[J]. Clin Transl Imaging, 2022, 10(5): 467-475. DOI: 10.1007/s40336-022-00489-6.
[2]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of theCentral Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[3]
REUSS D E. Updates on the WHO diagnosis of IDH-mutant glioma[J]. J Neurooncol, 2023, 162(3): 461-469. DOI: 10.1007/s11060-023-04250-5.
[4]
MOLINARO A M, TAYLOR J W, WIENCKE J K, et al. Genetic and molecular epidemiology of adult diffuse glioma[J]. Nat Rev Neurol, 2019, 15(7): 405-417. DOI: 10.1038/s41582-019-0220-2.
[5]
HAN S, LIU Y, CAI S J, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets[J]. Br J Cancer, 2020, 122(11): 1580-1589. DOI: 10.1038/s41416-020-0814-x.
[6]
ŚLEDZIŃSKA P, BEBYN M G, FURTAK J, et al. Prognostic and Predictive Biomarkers in Gliomas[J/OL]. Int J Mol Sci, 2021, 22(19): 10373 [2024-04-22]. https://www.mdpi.com/1422-0067/22/19/10373. DOI: 10.3390/ijms221910373.
[7]
THENUWARA G, CURTIN J, TIAN F. Advances in diagnostic tools and therapeutic approaches for gliomas: A comprehensive review[J/OL]. Sensors, 2023, 23(24): 9842 [2024-04-22]. https://www.mdpi.com/1424-8220/23/24/9842. DOI: 10.3390/s23249842.
[8]
WEISKOPF N, EDWARDS L J, HELMS G, et al. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology[J]. Nat Rev Phys, 2021, 3(8): 570-588. DOI: 10.1038/s42254-021-00326-1.
[9]
GONÇALVES F G, SERAI S D, ZUCCOLI G. Synthetic brain MRI[J]. Top Magn Reson Imaging, 2018, 27(6): 387-393. DOI: 10.1097/RMR.0000000000000189.
[10]
GE X, WANG M, MA H, et al. Investigated diagnostic value of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling and diffusion-weighted imaging in the grading of glioma[J]. Magn Reson Imaging, 2022, 86: 20-27. DOI: 10.1016/j.mri.2021.11.006.
[11]
XIE J P, ZHANG W D, ZHU J Y, et al. The clinical value of T1 and T2 values in predicting brain glioma grading and cell proliferation activity[J]. Chin J Magn Reson Imaging, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
[12]
BLYSTAD I, WARNTJES J B M, SMEDBY Ö, et al. Quantitative MRI for analysis of peritumoral edema in malignant gliomas[J/OL]. PLoS One, 2017, 12(5): e177135 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/28542553/. DOI: 10.1371/journal.pone.0177135.
[13]
LÜ R R, YANG Z H, GE X, et al. Preliminary study of synthetic MRI combined withthree-dimensionalarterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma[J]. Chin J Magn Reson Imaging, 2022, 13(8): 19-23. DOI: 10.12015/issn.1674-8034.2022.08.004.
[14]
ZHOU J, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[15]
CHEN K, JIANG X, DENG L, et al. Differentiation between glioma recurrence and treatment effects using amide proton transfer imaging: A mini-Bayesian bivariate meta-analysis[J/OL]. Front Oncol, 2022, 12: 852076 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/35978813/.2022.852076/full. DOI: 10.3389/fonc.2022.852076.
[16]
STANISZ G J, ODROBINA E E, PUN J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T[J]. Magn Reson Med, 2005, 54(3): 507-512. DOI: 10.1002/mrm.20605.
[17]
HATTINGEN E, MULLER A, JURCOANE A, et al. Value of quantitative magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients[J]. Oncotarget, 2017, 8(32): 53542-53551. DOI: 10.18632/oncotarget.18612.
[18]
LIU L, YIN B, GENG D Y, et al. Changes of T2 relaxation time from neoadjuvant chemotherapy in breast cancer lesions[J/OL]. Iran J Radiol, 2016, 13(3): e24014 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/27853488/. DOI: 10.5812/iranjradiol.24014.
[19]
LESCHER S, JURCOANE A, VEIT A, et al. Quantitative T1 and T2 mapping in recurrent glioblastomas under bevacizumab: earlier detection of tumor progression compared to conventional MRI[J]. Neuroradiology, 2015, 57(1): 11-20. DOI: 10.1007/s00234-014-1445-9.
[20]
ELMAOGOD E A ABD, DAOUD S A, MOSTAFA Z M, et al. Prognostic significance of HIF1-α immunohistochemical expression in gliomas and its relation to IDH1 mutation status[J/OL]. Beni-Suef Univ J Basic Appl Sci, 2022, 11(1): 140 [2024-04-22]. https://link.springer.com/article/10.1186/s43088-022-00325-w. DOI: 10.1186/s43088-022-00325-w.
[21]
CHEN W, CHENG X, WANG X, et al. Clinical implications of hypoxia-inducible factor-1α and caveolin-1 overexpression in isocitrate dehydrogenase-wild type glioblastoma multiforme[J]. Oncol Lett, 2019, 17(3): 2867-2873. DOI: 10.3892/ol.2019.9929.
[22]
LIU S, LIU X, ZHANG C, et al. T-Cell exhaustion status under high and low levels of hypoxia-inducible factor 1α expression in glioma[J/OL]. Front Pharmacol, 2021, 12: 711772 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/34305618/. DOI: 10.3389/fphar.2021.711772.
[23]
MAGAR A G, MORYA V K, KWAK M K, et al. A molecular perspective on HIF-1α and angiogenic stimulator networks and their role in solid tumors: An update[J/OL]. Int J Mol Sci, 2024, 25(6): 3313 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38542288/. DOI: 10.3390/ijms25063313.
[24]
HU Y, CHEN Y, WANG J, et al. Non-invasive estimation of glioma IDH1 mutation and VEGF expression by histogram analysis of dynamic contrast-enhanced MRI[J/OL]. Front Oncol, 2020, 10: 593102 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/33425744/. DOI: 10.3389/fonc.2020.593102.
[25]
KERN M, AUER T A, PICHT T, et al. T2mapping of molecular subtypes of WHO grade Ⅱ/Ⅲ gliomas[J/OL]. BMC Neurol, 2020, 20(1): 8 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/31914945/. DOI: 10.1186/s12883-019-1590-1.
[26]
ROHRER M, BAUER H, MINTOROVITCH J, et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths[J]. Invest Radiol, 2005, 40(11): 715-724. DOI: 10.1097/01.rli.0000184756.66360.d3.
[27]
ARVANITIS C D, FERRARO G B, JAIN R K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41. DOI: 10.1038/s41568-019-0205-x.
[28]
CARMELIET P, JAIN R K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases[J]. Nat Rev Drug Discov, 2011, 10(6): 417-427. DOI: 10.1038/nrd3455.
[29]
KOIKE H, MORIKAWA M, ISHIMARU H, et al. Amide proton transfer–chemical exchange saturation transfer imaging of intracranial brain tumors and tumor-like lesions: Our experience and a review[J/OL]. Diagnostics, 2023, 13(5): 914 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/36900058/. DOI: 10.3390/diagnostics13050914.
[30]
JIANG S, ZOU T, EBERHART C G, et al. Predicting IDH mutation status in grade Ⅱ gliomas using amide proton transfer‐weighted (APTw) MRI[J]. Magn Reson Med, 2017, 78(3): 1100-1109. DOI: 10.1002/mrm.26820.
[31]
HAN Y, WANG W, YANG Y, et al. Amide proton transfer imaging in predicting isocitrate dehydrogenase 1 mutation status of grade Ⅱ/Ⅲ gliomas based on support vector machine[J/OL]. Front Neurosci, 2020, 14: 144 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/32153362/. DOI: 10.3389/fnins.2020.00144.
[32]
GUO H, LIU J, HU J, et al. Diagnostic performance of gliomas grading and IDH status decoding A comparison between 3D amide proton transfer APT and four diffusion-weighted MRI models[J]. J Magn Reson Imaging, 2022, 56(6): 1834-1844. DOI: 10.1002/jmri.28211.
[33]
JOO B, HAN K, AHN S S, et al. Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma[J]. Eur Radiol, 2019, 29(12): 6643-6652. DOI: 10.1007/s00330-019-06203-x.
[34]
XU Z, KE C, LIU J, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T[J/OL]. Eur J Radiol, 2021, 134: 109466 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/33307459/. DOI: 10.1016/j.ejrad.2020.109466.
[35]
PAECH D, WINDSCHUH J, OBERHOLLENZER J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T[J]. Neuro Oncol, 2018, 20(12): 1661-1671. DOI: 10.1093/neuonc/noy073.
[36]
BULAKBAŞı N, PAKSOY Y. Advanced imaging in adult diffusely infiltrating low-grade gliomas[J/OL]. Insights Imaging, 2019, 10(1): 122 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/31853670/. DOI: 10.1186/s13244-019-0793-8.
[37]
SARTORETTI E, SARTORETTI T, WYSS M, et al. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases[J/OL]. Sci Rep, 2021, 11(1): 5506 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/33750899/. DOI: 10.1038/s41598-021-85168-8.
[38]
SUN S J, LI Q, LI F Z, et al. The value of synthetic MRI full volume histogram features for identifying benign and malignant breast lesions[J]. Chin J Magn Reson Imaging, 2023, 14(8): 58-62, 164. DOI: 10.12015/issn.1674-8034.2023.08.009.
[39]
YU X Y, ZHOU Z P, TONG Q Y, et al. Application value of synthetic MRI in the differential diagnosis of denign and malignant breast lesions and prognosis lymph node metastasis of breast cancer[J]. J Clin Radiol, 2023, 42(2): 244-251. DOI: 10.13437/j.cnki.jcr.2023.02.014.

PREV Prediction of adult-type diffuse gliomas IDH phenotype through an ensemble machine learning model with integrating of MRI visual and DTI histogram
NEXT Feasibility of time-dependent diffusion MRI-based indicators for identifying MGMT promoter methylation in glioblastomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn