Share:
Share this content in WeChat
X
Clinical Article
Feasibility of time-dependent diffusion MRI-based indicators for identifying MGMT promoter methylation in glioblastomas
LIANG Xiaojing  ZHANG Yun  FU Yonggui  XIE Yan  WEI Qianqian  CHENG Liuquan  WANG Qingjun 

Cite this article as: LIANG X J, ZHANG Y, FU Y G, et al. Feasibility of time-dependent diffusion MRI-based indicators for identifying MGMT promoter methylation in glioblastomas[J]. Chin J Magn Reson Imaging, 2024, 15(11): 67-74. DOI:10.12015/issn.1674-8034.2024.11.011.


[Abstract] Objective To investigate the feasibility of time-dependent diffusion MRI based diagnostic indicators for identifying O6-methylguanine deoxyribonucleic acid methyltransferase (MGMT) promoter methylation status in newly diagnosed glioblastomas.Materials and Methods We enrolled 22 glioblastomas with methylated MGMT promoter (mMGMT) and 29 glioblastomas with unmethylated MGMT promoter (uMGMT) for diagnostic analysis and then 14 mMGMT glioblastomas and 14 uMGMT glioblastomas for validation application. Time-dependent diffusion MRI data was acquired using pulsed and oscillating gradient sequences on a 3 T scanner. Microstructural diagnostic indicators, including intracellular volume fraction ( fin), extracellular diffusivity (Dex), cell diameter (d), cellularity, and diffusivities at different frequencies (D0 Hz, D15 Hz, and D30 Hz), were estimated using a two-compartment model. These indicators were compared between mMGMT and uMGMT glioblastomas, and their discriminative performance was assessed with univariate logistic regression analysis. Significant variables were identified via multivariate logistic regression to construct a combined diagnostic model. Pairwise comparisons were used to evaluate diagnostic abilities.Results mMGMT glioblastomas showed higher fin, Dex and cellularity (all P<0.05) and lower D0 Hz (P=0.018) compared to uMGMT glioblastomas. Among these indicators, fin had the highest discriminant power with area under curve (AUC) was 0.95, sensitivity was 95%, specificity was 90%, and showed differences compared to other indicators (all P<0.05). No combined diagnostic model was constructed because fin was the independent influence variable in the multivariate logistic regression analysis. The accuracy was 82.14% using fin>0.16 as the diagnostic threshold for validation.Conclusions Time-dependent diffusion MRI–based fin show promise for characterizing MGMT promoter methylation status in newly diagnosed glioblastomas.
[Keywords] glioblastoma;time-dependent diffusion magnetic resonance imaging;magnetic resonance imaging;microstructure;oscillating gradient spin echo;O6-methylguanine deoxyribonucleic acid methyltransferase promoter;diagnosis

LIANG Xiaojing1   ZHANG Yun2   FU Yonggui1   XIE Yan1   WEI Qianqian1   CHENG Liuquan1   WANG Qingjun1*  

1 Department of Radiology, the Sixth Medicine Center of PLAGH, Beijing100048, China

2 Department of Radiology, Peking University International Hospital, Beijing102206, China

Corresponding author: WANG Q J, E-mail: wangqingjun@301hospital.com.cn

Conflicts of interest   None.

Received  2024-07-25
Accepted  2024-11-10
DOI: 10.12015/issn.1674-8034.2024.11.011
Cite this article as: LIANG X J, ZHANG Y, FU Y G, et al. Feasibility of time-dependent diffusion MRI-based indicators for identifying MGMT promoter methylation in glioblastomas[J]. Chin J Magn Reson Imaging, 2024, 15(11): 67-74. DOI:10.12015/issn.1674-8034.2024.11.011.

[1]
SCHAFF L R and MELLINGHOFF I K. Glioblastoma and other primary brain malignancies in adults: A review[J]. JAMA, 2023, 329(7): 574-587. DOI: 10.1001/jama.2023.0023.
[2]
SEGURA P P, QUINTELA N V, GARCIA M M, et al. SEOM-GEINO clinical guidelines for high-grade gliomas of adulthood (2022)[J]. Clin Transl Oncol, 2023, 25(9): 2634-2646. DOI: 10.1007/s12094-023-03245-y.
[3]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[4]
SENER U, SULMAN E P, SARKARIA J N. Temozolomide use in elderly patients with MGMT promoter unmethylated glioblastoma: Is it finally time to dismount a dead horse?[J/OL]. Neuro Oncol, 2024 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/39081224. DOI: 10.1093/neuonc/noae143.
[5]
MAEKAWA T, HORI M, MURATA K, et al. Investigation of time-dependent diffusion in extra-axial brain tumors using oscillating-gradient spin-echo[J]. Magn Reson Imaging, 2023, 96: 67-74. DOI: 10.1016/j.mri.2022.11.010.
[6]
WU D, JIANG K, LI H, et al. Time-dependent diffusion MRI for quantitative microstructural mapping of prostate cancer[J]. Radiology, 2022, 303(3): 578-587. DOI: 10.1148/radiol.211180.
[7]
HERRERA S L, SHEFT M, MERCREDI M E, et al. Axon diameter inferences in the human corpus callosum using oscillating gradient spin echo sequences[J]. Magn Reson Imaging, 2022, 85: 64-70. DOI: 10.1016/j.mri.2021.10.014.
[8]
ZHANG H, LIU K, BA R, et al. Histological and molecular classifications of pediatric glioma with time-dependent diffusion MRI based microstructural mapping[J/OL]. Neuro Oncol, 2023 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/36617263. DOI: 10.1093/neuonc/noad003.
[9]
WU D, LIU D, HSU Y C, et al. Diffusion-prepared 3D gradient spin-echo sequence for improved oscillating gradient diffusion MRI[J]. Magn Reson Med, 2021, 85(1): 78-88. DOI: 10.1002/mrm.28401.
[10]
XU J, JIANG X, LI H, et al. Magnetic resonance imaging of mean cell size in human breast tumors[J]. Magn Reson Med, 2020, 83(6): 2002-2014. DOI: 10.1002/mrm.28056.
[11]
SHI X, WANG P, LI Y, et al. Using MRI radiomics to predict the efficacy of immunotherapy for brain metastasis in patients with small cell lung cancer[J]. Thorac Cancer, 2024, 15(9): 738-748. DOI: 10.1111/1759-7714.15259.
[12]
COHEN I, KRAUS M, GREENBERG G, et al. Effect of general anesthesia on MR optic nerve sheath diameter in the pediatric population[J]. J Magn Reson Imaging, 2023, 58(6): 1875-1881. DOI: 10.1002/jmri.28734.
[13]
HUANG H, ZHUANG F, LIU X, et al. T2* cartilage mapping in early axial spondyloarthritis: diagnostic accuracy and correlation with clinical characteristics, sacroiliitis MRI scorings, and diffusion metrics[J/OL]. Eur Radiol, 2024 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/39048742. DOI: 10.1007/s00330-024-10975-2.
[14]
WANG J, YANG Z, LUO M, et al. Value of intravoxel incoherent motion (IVIM) imaging for differentiation between intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 1504463 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/35615729. DOI: 10.1155/2022/1504463.
[15]
ZHAO E, YANG Y F, BAI M, et al. MRI radiomics-based interpretable model and nomogram for preoperative prediction of Ki-67 expression status in primary central nervous system lymphoma[J/OL]. Front Med (Lausanne), 2024, 11: 1345162 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/38994341. DOI: 10.3389/fmed.2024.1345162.
[16]
ZHANG L, YU Z, ZHANG Y, et al. A nomogram based on clinicopathological characteristics for estimating the risk of brain metastasis from advanced gastric cancer: A multi-center retrospective clinical study[J]. Ther Clin Risk Manag, 2024, 20: 391-404. DOI: 10.2147/TCRM.S460647.
[17]
HAN Y, YAN L F, WANG X B, et al. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: a region of interest based analysis[J/OL]. BMC Cancer, 2018, 18(1): 215 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/29467012. DOI: 10.1186/s12885-018-4114-2.
[18]
XI Y B, GUO F, XU Z L, et al. Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma[J]. J Magn Reson Imaging, 2018, 47(5): 1380-1387. DOI: 10.1002/jmri.25860.
[19]
KANAS V G, ZACHARAKI E I, THOMAS G A, et al. Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma[J]. Comput Methods Programs Biomed, 2017, 140: 249-257. DOI: 10.1016/j.cmpb.2016.12.018.
[20]
JIANG S, RUI Q, WANG Y, et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics[J]. Eur Radiol, 2018, 28(5): 2115-2123. DOI: 10.1007/s00330-017-5182-4.
[21]
SASAKI T, KINOSHITA M, FUJITA K, et al. Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma[J/OL]. Sci Rep, 2019, 9(1): 14435 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/31594994. DOI: 10.1038/s41598-019-50849-y.
[22]
LI L, XIAO F, WANG S, et al. Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis[J/OL]. Sci Rep, 2024, 14(1): 16031 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/38992201. DOI: 10.1038/s41598-024-66653-2.
[23]
LIU R, LIU Q, ZHAO K, et al. MR Imaging, MGMT promoter methylation features and prognostic analysis of subventricular zone contacting IDH wild-type glioblastoma[J]. Curr Med Imaging, 2023, 19(12): 1378-1386. DOI: 10.2174/1573405619666230123114753.
[24]
FAGHANI S, KHOSRAVI B, MOASSEFI M, et al. A comparison of three different deep learning-based models to predict the MGMT promoter methylation status in glioblastoma using brain MRI[J]. J Digit Imaging, 2023, 36(3): 837-846. DOI: 10.1007/s10278-022-00757-x.
[25]
DONISELLI F M, PASCUZZO R, AGRO M, et al. Development of a radiomic model for MGMT promoter methylation detection in glioblastoma using conventional MRI[J/OL]. Int J Mol Sci, 2023, 25(1): 138 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/38203308. DOI: 10.3390/ijms25010138.
[26]
LU J, LI X, LI H. Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas[J]. Magn Reson Imaging, 2021, 83: 189-195. DOI: 10.1016/j.mri.2021.09.005.
[27]
ROMANO A, CALABRIA L F, TAVANTI F, et al. Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status[J]. Eur Radiol, 2013, 23(2): 513-520. DOI: 10.1007/s00330-012-2601-4.
[28]
AHN S S, SHIN N Y, CHANG J H, et al. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging[J]. J Neurosurg, 2014, 121(2): 367-373. DOI: 10.3171/2014.5.JNS132279.
[29]
KAMALI A, GANDHI A, NUNEZ L C, et al. The role of apparent diffusion coefficient values in glioblastoma: Differentiating tumor progression versus treatment-related changes[J]. J Comput Assist Tomogr, 2022, 46(6): 923-928. DOI: 10.1097/RCT.0000000000001373.
[30]
POPE W B, LAI A, MEHTA R, et al. Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma[J]. AJNR Am J Neuroradiol, 2011, 32(5): 882-889. DOI: 10.3174/ajnr.A2385.
[31]
MA X, CHENG K, CHENG G, et al. Apparent diffusion coefficient as imaging biomarker for identifying IDH mutation, 1p19q codeletion, and MGMT promoter methylation status in patients with glioma[J]. J Magn Reson Imaging, 2023, 58(3): 732-738. DOI: 10.1002/jmri.28589.
[32]
WANG L, WANG H, D'ANGELO F, et al. Quantifying intra-tumoral genetic heterogeneity of glioblastoma toward precision medicine using MRI and a data-inclusive machine learning algorithm[J/OL]. PLoS One, 2024, 19(4): e0299267 [2024-07-25]. https://www.ncbi.nlm.nih.gov/pubmed/38568950. DOI: 10.1371/journal.pone.0299267.

PREV The value of synthetic MRI combined with amide proton transfer imaging in projecting IDH1 gene state in gliomas
NEXT Feasibility of compressed sensing cine imaging for analysis of left ventricular strain in cardiac MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn