Share:
Share this content in WeChat
X
Clinical Article
Feasibility of compressed sensing cine imaging for analysis of left ventricular strain in cardiac MRI
WANG Ni  WU Chen  ZHOU Yunfeng  TAN Zhongxiao  CHENG Liang  LIU Mengxiao 

Cite this article as: WANG N, WU C, ZHOU Y F, et al. Feasibility of compressed sensing cine imaging for analysis of left ventricular strain in cardiac MRI[J]. Chin J Magn Reson Imaging, 2024, 15(11): 75-82. DOI:10.12015/issn.1674-8034.2024.11.012.


[Abstract] Objective Explore the feasibility of using single-shot compressed sensing real-time cine (RT-CS) and two-shots compressed sensing cine (2 shots-CS) cardiac magnetic resonance (CMR) sequences to assess left ventricular (LV) strain.Materials and Methods Sixty-four patients undergoing CMR were prospectively enrolled. Each patient underwent conventional segmented cine (Seg), 2 shots-CS, and RT-CS. The acquisition time for each sequence was recorded. Using Seg as the "gold standard", the image quality of the three cine sequences was evaluated, including subjective assessment, artifact evaluation, and edge sharpness. LV volumetric and functional parameters, as well as global and regional strain parameters (basal, mid, apical), were measured. Bland-Altman plots and intra-class correlation coefficients (ICC) were used to compare the consistency of LV volumetric and functional parameters and strain measurements obtained from the three sequences.Results Acquisition time for Seg, 2 shots-CS, and RT-CS was (271.72±87.74) s, (62.19±33.09) s, and (29.39±20.60) s, respectively, with statistically significant differences (P<0.001). Subjective image quality ratings showed no significant difference between Seg and 2 shots-CS (P=0.122), but RT-CS had lower ratings than Seg (P=0.001). Artifacts were less pronounced in RT-CS than in both Seg (P=0.038) and 2 shots-CS (P=0.022), while there was no significant difference between Seg and 2 shots-CS (P=0.825). Edge sharpness in 2 shots-CS was similar to Seg (P=0.068), but RT-CS showed significantly lower sharpness than Seg (P<0.001). In quantitative left ventricular function analysis, end-diastolic volume (EDV) and stroke volume (SV) were lower in 2 shots-CS compared to Seg (P<0.001), while end-systolic volume (ESV), ejection fraction (EF), and left ventricular mass (LVM) did not significantly differ between 2 shots-CS and Seg (P>0.05). All functional volumetric parameters in RT-CS were lower than in Seg, with statistically significant differences (P<0.05). Both CS sequences showed excellent agreement with Seg for volumetric and functional parameters (ICC>0.910). For strain analysis, both 2 shots-CS and RT-CS showed lower radial strain (RS), circumferential strain (CS), and longitudinal strain (LS) values compared to Seg, with RT-CS values being the lowest, and all differences were statistically significant (P<0.05). Except for apical RS (ICC=0.559, 0.529), strain values in 2 shots-CS and RT-CS showed good to excellent agreement with Seg (ICC=0.776-0.950 for 2 shots-CS; 0.716-0.941 for RT-CS). Global strain showed higher consistency than regional strain in both CS sequences, with 2 shots-CS demonstrating higher consistency than RT-CS.Conclusions Both CS cine sequences significantly reduced scan time while maintaining acceptable image quality. In particular, 2 shots-CS showed good agreement with Seg in strain measurements, with global strain showing better consistency than regional strain. However, strain values from CS cine sequences were lower than those from Seg. To avoid measurement discrepancies due to sequence variation, it is recommended to use the same cine sequence consistently in follow-up of chronic conditions.
[Keywords] magnetic resonance imaging;cardiac magnetic resonance;cine;compressed sensing;strain;feature tracking

WANG Ni1   WU Chen1*   ZHOU Yunfeng1   TAN Zhongxiao1   CHENG Liang1   LIU Mengxiao2  

1 Department of Radiology, Yijishan Hospital, Wannan Medical College, Wuhu241001, China

2 Siemens (Shenzhen) Magnetic Resonance Ltd., Shenzhen518000, China

Corresponding author: WU C, E-mail: wuchen875@163.com

Conflicts of interest   None.

Received  2024-07-26
Accepted  2024-11-10
DOI: 10.12015/issn.1674-8034.2024.11.012
Cite this article as: WANG N, WU C, ZHOU Y F, et al. Feasibility of compressed sensing cine imaging for analysis of left ventricular strain in cardiac MRI[J]. Chin J Magn Reson Imaging, 2024, 15(11): 75-82. DOI:10.12015/issn.1674-8034.2024.11.012.

[1]
PEDRIZZETTI G, CLAUS P, KILNER P J, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 51 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/27561421/. DOI: 10.1186/s12968-016-0269-7.
[2]
AMZULESCU M S, CRAENE M D, LANGET H, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619. DOI: 10.1093/ehjci/jez041.
[3]
SCHUSTER A, HOR K N, KOWALLICK J T, et al. Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications[J/OL]. Circ Cardiovasc Imaging, 2016, 9(4): e004077 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/27009468/. DOI: 10.1161/CIRCIMAGING.115.004077.
[4]
PENG J P, ZHAO X D, ZHAO L, et al. Normal values of myocardial deformation assessed by cardiovascular magnetic resonance feature tracking in a healthy Chinese population: a multicenter study[J/OL]. Front Physiol, 2018, 9: 1181 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/30233388/. DOI: 10.3389/fphys.2018.01181.
[5]
TRUONG V T, PALMER C, WOLKING S, et al. Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(4): 446-453. DOI: 10.1093/ehjci/jez157.
[6]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[7]
RAJIAH P S, FRANÇOIS C J, LEINER T. Cardiac MRI: state of the art[J/OL]. Radiology, 2023, 307(3): e223008 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/37039684/. DOI: 10.1148/radiol.223008.
[8]
LONGÈRE B, GKIZAS C V, COISNE A, et al. 60retrogated compressed sensing-S 2D cine of the heart: sharper borders and accurate quantification[J/OL]. J Clin Med, 2021, 10(11): 2417 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/34072464/. DOI: 10.3390/jcm10112417.
[9]
CRAFT J, LI Y, NASHTA N F, et al. Comparison between compressed sensing and segmented cine cardiac magnetic resonance: a meta-analysis[J/OL]. BMC Cardiovasc Disord, 2023, 23(1): 473 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/37735355/. DOI: 10.1186/s12872-023-03426-1.
[10]
YAO K X, DENG W, HE R, et al. Comparing strain assessment in compressed sensing and conventional cine MRI[J]. J Imaging Inform Med, 2024, 37(4): 1933-1943. DOI: 10.1007/s10278-024-01040-x.
[11]
LI Y Y, LIN L, WANG J, et al. Cardiac cine with compressed sensing real-time imaging and retrospective motion correction for free-breathing assessment of left ventricular function and strain in clinical practice[J]. Quant Imaging Med Surg, 2023, 13(4): 2262-2277. DOI: 10.21037/qims-22-596.
[12]
CHEN Y, QIAN W, LIU W, et al. Feasibility of single-shot compressed sensing cine imaging for analysis of left ventricular function and strain in cardiac MRI[J/OL]. Clin Radiol, 2021, 76(6): 471.e1-471471.e7 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/33563412/. DOI: 10.1016/j.crad.2020.12.024.
[13]
ZOU Q, XU H Y, FU C, et al. Utility of single-shot compressed sensing cardiac magnetic resonance cine imaging for assessment of biventricular function in free-breathing and arrhythmic pediatric patients[J/OL]. Int J Cardiol, 2021, 338: 258-264 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/34181995/. DOI: 10.1016/j.ijcard.2021.06.043.
[14]
KOCAOGLU M, PEDNEKAR A S, WANG H, et al. Breath-hold and free-breathing quantitative assessment of biventricular volume and function using compressed SENSE: a clinical validation in children and young adults[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 54 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/32713347/. DOI: 10.1186/s12968-020-00642-y.
[15]
KLINKE V, MUZZARELLI S, LAURIERS N, et al. Quality assessment of cardiovascular magnetic resonance in the setting of the European CMR registry: description and validation of standardized criteria[J/OL]. J Cardiovasc Magn Reson, 2013, 15(1): 55 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/23787094/. DOI: 10.1186/1532-429X-15-55.
[16]
LONGÈRE B, ALLARD P E, GKIZAS C V, et al. Compressed sensing real-time cine reduces CMR arrhythmia-related artifacts[J/OL]. J Clin Med, 2021, 10(15): 3274 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/34362058/. DOI: 10.3390/jcm10153274.
[17]
WETZL J, SCHMIDT M, PONTANA F, et al. Single-breath-hold 3-D CINE imaging of the left ventricle using Cartesian sampling[J]. MAGMA, 2018, 31(1): 19-31. DOI: 10.1007/s10334-017-0624-1.
[18]
LI T C, FENG H J, XU Z H. A new analytical edge spread function fitting model for modulation transfer function measurement[J/OL]. Chin Opt Lett, 2011, 9(3): 031101 [2024-08-01]. https://opg.optica.org/col/abstract.cfm?URI=col-9-3-031101. DOI: 10.3788/COL20110903.031101.
[19]
SCHULZ-MENGER J, BLUEMKE D A, BREMERICH J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: society for Cardiovascular Magnetic Resonance (SCMR): board of Trustees Task Force on Standardized Post-Processing[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 19 [2024-08-01]. https://pubmed.ncbi.nlm.nih.gov/32160925/. DOI: 10.1186/s12968-020-00610-6.
[20]
CLAUS P, OMAR A M S, PEDRIZZETTI G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. DOI: 10.1016/j.jcmg.2015.11.001.
[21]
KOO T K, LI M Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research[J]. J Chiropr Med, 2016, 15(2): 155-163. DOI: 10.1016/j.jcm.2016.02.012.
[22]
VERMERSCH M, LONGÈRE B, COISNE A, et al. Compressed sensing real-time cine imaging for assessment of ventricular function, volumes and mass in clinical practice[J]. Eur Radiol, 2020, 30(1): 609-619. DOI: 10.1007/s00330-019-06341-2.
[23]
LAUBROCK K, VON LOESCH T, STEINMETZ M, et al. Imaging of arrhythmia: real-time cardiac magnetic resonance imaging in atrial fibrillation[J/OL]. Eur J Radiol Open, 2022, 9: 100404 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/35265735/. DOI: 10.1016/j.ejro.2022.100404.
[24]
LANGTON J E N, LAM H I, COWAN B R, et al. Estimation of myocardial strain from non-rigid registration and highly accelerated cine CMR[J]. Int J Cardiovasc Imag, 2017, 33(1): 101-107. DOI: 10.1007/s10554-016-0978-x.
[25]
KIDO T, HIRAI K, OGAWA R, et al. Comparison between conventional and compressed sensing cine cardiovascular magnetic resonance for feature tracking global circumferential strain assessment[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 10 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/33618722/. DOI: 10.1186/s12968-021-00708-5.
[26]
BACKHAUS S J, METSCHIES G, BILLING M, et al. Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 60 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/34001175/. DOI: 10.1186/s12968-021-00740-5.
[27]
VON KNOBELSDORFF-BRENKENHOFF F, SCHUNKE T, REITER S, et al. Influence of contrast agent and spatial resolution on myocardial strain results using feature tracking MRI[J]. Eur Radiol, 2020, 30(11): 6099-6108. DOI: 10.1007/s00330-020-06971-x.
[28]
CHEN X R, PAN J F, HU Y, et al. Feasibility of one breath-hold cardiovascular magnetic resonance compressed sensing cine for left ventricular strain analysis[J/OL]. Front Cardiovasc Med, 2022, 9: 903203 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/36035944/. DOI: 10.3389/fcvm.2022.903203.
[29]
MILITARU S, PANOVSKY R, HANET V, et al. Multivendor comparison of global and regional 2D cardiovascular magnetic resonance feature tracking strains vs tissue tagging at 3T[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 54 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/33980259/. DOI: 10.1186/s12968-021-00742-3.
[30]
DENG Q, TANG L, WU X, et al. Feasibility of single-breath-hold compressed sensing real-time cine imaging for assessment of ventricular function and left ventricular strain in cardiac magnetic resonance[J]. J Sichuan Univ Med Sci, 2022, 53(3): 497-503. DOI: 10.12182/20220560506.
[31]
WANG J, LI X, LIN L, et al. Two-shot compressed sensing techniques accelerate cardiac cine sequence acquisition and quantitative evaluation of the diagnostic effcacy[J]. Acad J Second Mil Med Univ, 2019, 40(3): 257-261. DOI: 10.16781/j.0258-879x.2019.03.0257.
[32]
HALFMANN M C, KLIMZAK T, SCHOEPF U J, et al. Feature-tracking strain parameters differ between highly accelerated and conventional acquisitions: a multisoftware assessment[J]. J Thorac Imaging, 2024, 39(2): 127-135. DOI: 10.1097/RTI.0000000000000762.
[33]
WANG J, LI X, LIN L, et al. Diagnostic efficacy of 2-shot compressed sensing cine sequence cardiovascular magnetic resonance imaging for left ventricular function[J]. Cardiovasc Diagn Ther, 2020, 10(3): 431-441. DOI: 10.21037/cdt-20-135.

PREV Feasibility of time-dependent diffusion MRI-based indicators for identifying MGMT promoter methylation in glioblastomas
NEXT Classification of chemotherapy related cognitive impairment in breast cancer based on resting brain activity and functional connectivity features
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn