Share:
Share this content in WeChat
X
Clinical Article
Value of MRI combining with clinical indicators in optimizing the risk stratification of O-RADS MRI Score 4
LI Caihong  LI Yi  LIU Liu  ZHOU Yin  YANG Yaying  MAO Yun 

Cite this article as: LI C H, LI Y, LIU L, et al. Value of MRI combining with clinical indicators in optimizing the risk stratification of O-RADS MRI Score 4[J]. Chin J Magn Reson Imaging, 2024, 15(11): 103-109. DOI:10.12015/issn.1674-8034.2024.11.016.


[Abstract] Objective To investigate the value of MRI characteristics combined with clinical indicators [carbohydrate antigen 125 (CA125), menopausal status, age] in optimizing the Ovarian-Adnexal Reporting and Data System (O-RADS) MRI score 4 mass risk stratification and whether it can improve the diagnostic performance of the O-RADS MRI scoring system.Materials and Methods Totally 57 ovarian adnexal masses scored 4 according to O-RADS MRI were retrospectively analyzed. All masses underwent preoperative pelvic MRI enhancement imaging and were confirmed by histopathology. They were evaluated by two experienced radiologists and determined through consultation when the results were inconsistent. The pathological results were used as the gold standard to analyze the differences of MRI and clinical indicators in the O-RADS MRI score 4 group of benign and malignant masses. The classification and regression tree (CART) was employed to construct a model for statistically significant indicators for the further subdivision of the O-RADS MRI 4 mass. Receiver operating characteristic (ROC) analysis was used to evaluate the prediction accuracy of the decision tree model. To evaluate the diagnostic effect of O-RADS MRI scoring system before and after O-RADS MRI score 4 mass optimization, and compare the difference of area under the curve (AUC). The consistency of the optimized prediction results among different viewers was calculated.Results (1) Among 57 O-RADS MRI score 4 masses, 22 masses were benign, and 35 masses were malignant. Solid tissue showed hypointense on T2WI was more common in benign mass well (P<0.001). Papillary projections and irregularly thickened cyst wall or septations were more frequent in malignant mass (P<0.001, P=0.008). The CA125 level in malignant mass was often greater than 35 U/mL (P<0.05). The AUC of the decision tree model for predicting benign and malignant tumors was 0.984 (95% CI: 0.908-1.000), with a sensitivity of 97.1%, specificity of 90.9% and accuracy of 94.7%. (2) The AUC of the O-RADS MRI scoring system increased from 0.838 to 0.945 (P<0.001) in the whole population after optimizing the O-RADS MRI 4 mass with the decision tree model; In premenopausal women, the AUC increased from 0.818 to 0.934 (P<0.001). In postmenopausal women, the AUC increased from 0.871 to 0.962 (P=0.008). There was excellent agreement between the optimized predictions among physicians with different experience levels (Kappa=0.887, 0.869).Conclusion In this study, a predictive model developed based on solid tissue MRI features combined with CA125 levels helped optimize the risk stratification of O-RADS MRI score 4 mass and significantly improved the diagnostic performance of the O-RADS MRI scoring system, especially in premenopausal women.
[Keywords] ovarian-adnexal mass;Ovarian-Adnexal Reporting and Data System;benign and malignant lesions;differential diagnosis;magnetic resonance imaging

LI Caihong1   LI Yi1   LIU Liu1   ZHOU Yin1   YANG Yaying2, 3, 4, 5   MAO Yun1*  

1 Department of Radiology, the First Hospital of Chongqing Medical University, Chongqing400016, China

2 Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing400016, China

3 Pathology Diagnostic Center, Chongqing Medical University, Chongqing400016, China

4 Clinical Pathology Research Laboratory, Chongqing Medical University, Chongqing400016, China

5 Department of Pathology, the First Hospital of Chongqing Medical University, Chongqing400016, China

Corresponding author: MAO Y, E-mail: maoyun1979@163.com

Conflicts of interest   None.

Received  2024-08-02
Accepted  2024-11-10
DOI: 10.12015/issn.1674-8034.2024.11.016
Cite this article as: LI C H, LI Y, LIU L, et al. Value of MRI combining with clinical indicators in optimizing the risk stratification of O-RADS MRI Score 4[J]. Chin J Magn Reson Imaging, 2024, 15(11): 103-109. DOI:10.12015/issn.1674-8034.2024.11.016.

[1]
SIEGEL R, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74: 12-49. DOI: 10.3322/caac.21820.
[2]
WEBB P M, JORDAN S J. Global epidemiology of epithelial ovarian cancer[J]. Nat Rev Clin Oncol, 2024, 21(5): 389-400. DOI: 10.1038/s41571-024-00881-3.
[3]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[4]
GONZÁLEZ-MARTÍN A, HARTER P, LEARY A, et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2023, 34(10): 833-848. DOI: 10.1016/j.annonc.2023.07.011.
[5]
MAY T, OZA A. Conservative management of adnexal masses[J]. Lancet Oncol, 2019, 20(3): 326-327. DOI: 10.1016/S1470-2045(18)30939-2.
[6]
WOLFMAN W, THURSTON J, YEUNG G, et al. Guideline No. 404: initial investigation and management of benign ovarian masses[J/OL]. J Obstet Gynaecol Can, 2020, 42(8): 1040-1050.e1 [2024-06-05]. https://pubmed.ncbi.nlm.nih.gov/32736855/. DOI: 10.1016/j.jogc.2020.01.014.
[7]
POPLAWSKI R, MA K. Benign ovarian cysts in premenopausal women[J]. Obstet Gynaecol Reprod Med, 2022, 32(10): 234-239. DOI: 10.1016/j.ogrm.2022.08.003.
[8]
TIMMERMAN D, PLANCHAMP F, BOURNE T, et al. ESGO/ISUOG/IOTA/ESGE Consensus Statement on pre-operative diagnosis of ovarian tumors[J]. Int J Gynecol Cancer, 2021, 31(7): 961-982. DOI: 10.1136/ijgc-2021-002565.
[9]
ROSELAND M E, MATUREN K E, SHAMPAIN K L, et al. Adnexal mass imaging: contemporary guidelines for clinical practice[J]. Radiol Clin North Am, 2023, 61(4): 671-685. DOI: 10.1016/j.rcl.2023.02.002.
[10]
ANDREOTTI R F, TIMMERMAN D, STRACHOWSKI L M, et al. O-RADS US risk stratification and management system: a consensus guideline from the ACR ovarian-adnexal reporting and data system committee[J]. Radiology, 2020, 294(1): 168-185. DOI: 10.1148/radiol.2019191150.
[11]
THOMASSIN-NAGGARA I, PONCELET E, JALAGUIER-COUDRAY A, et al. Ovarian-adnexal reporting data system magnetic resonance imaging (O-RADS MRI) score for risk stratification of sonographically indeterminate adnexal masses[J/OL]. JAMA Netw Open, 2020, 3(1): e1919896 [2024-06-05]. https://pubmed.ncbi.nlm.nih.gov/31977064/. DOI: 10.1001/jamanetworkopen.2019.19896.
[12]
SADOWSKI E A, STEIN E B, THOMASSIN-NAGGARA I, et al. O-RADS MRI after initial ultrasound for adnexal lesions: AJR expert panel narrative review[J]. AJR Am J Roentgenol, 2023, 220(1): 6-15. DOI: 10.2214/AJR.22.28084.
[13]
LEE S I, KANG S K. MRI improves the characterization of incidental adnexal masses detected at sonography[J/OL]. Radiology, 2023, 307(1): e222866 [2024-04-27]. https://pubmed.ncbi.nlm.nih.gov/36413134/. DOI: 10.1148/radiol.222866.
[14]
STRACHOWSKI L M, JHA P, PHILLIPS C H, et al. O-RADS US v2022: an update from the American college of radiology's ovarian-adnexal reporting and data system US committee[J/OL]. Radiology, 2023, 308(3): e230685 [2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/37698472/. DOI: 10.1148/radiol.230685.
[15]
THOMASSIN-NAGGARA I, AUBERT E, ROCKALL A, et al. Adnexal masses: development and preliminary validation of an MR imaging scoring system[J]. Radiology, 2013, 267(2): 432-443. DOI: 10.1148/radiol.13121161.
[16]
RIZZO S, COZZI A, DOLCIAMI M, et al. O-RADS MRI: a systematic review and meta-analysis of diagnostic performance and category-wise malignancy rates[J/OL]. Radiology, 2023, 307(1): e220795 [2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/36413127/. DOI: 10.1148/radiol.220795.
[17]
SADOWSKI E A, THOMASSIN-NAGGARA I, ROCKALL A, et al. O-RADS MRI risk stratification system: guide for assessing adnexal lesions from the ACR O-RADS committee[J]. Radiology, 2022, 303(1): 35-47. DOI: 10.1148/radiol.204371.
[18]
REINHOLD C, ROCKALL A, SADOWSKI E A, et al. Ovarian-adnexal reporting lexicon for MRI: a white paper of the ACR ovarian-adnexal reporting and data systems MRI committee[J]. J Am Coll Radiol, 2021, 18(5): 713-729. DOI: 10.1016/j.jacr.2020.12.022.
[19]
XIA B S, WU J H. Application of Kappa consistency test in laboratory medicine research[J]. Chin J Lab Med, 2006, 29(1): 83-84. DOI: 10.3760/j:issn:1009-9158.2006.01.030.
[20]
WILSON M P, KATLARIWALA P, LOW G. Solid hypoechoic adnexal lesions with acoustic shadowing warrant an MRI recommendation in the O-RADS risk stratification and management system[J/OL]. Radiology, 2020, 296(1): E11-E13 [2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/32315270/. DOI: 10.1148/radiol.2020200437.
[21]
PARK S BIN. Features of the hypointense solid lesions in the female pelvis on T2-weighted MRI[J]. J Magn Reson Imaging, 2014, 39(3): 493-503. DOI: 10.1002/jmri.24512.
[22]
AVESANI G, ELIA L, ANGHELONE A G, et al. Features of cystadenofibroma on magnetic resonance imaging: an update using the O-RADS lexicon and considering diffusion-weighted and perfusion imaging[J/OL]. Eur J Radiol, 2022, 154: 110429 [2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/35797789/. DOI: 10.1016/j.ejrad.2022.110429.
[23]
FLICEK K T, VANBUREN W, DUDIAK K, et al. Borderline epithelial ovarian tumors: what the radiologist should know[J]. Abdom Radiol, 2021, 46(6): 2350-2366. DOI: 10.1007/s00261-020-02688-z.
[24]
TAYLOR E C, IRSHAID L, MATHUR M. Multimodality imaging approach to ovarian neoplasms with pathologic correlation[J]. Radiographics, 2021, 41(1): 289-315. DOI: 10.1148/rg.2021200086.
[25]
VALENTIN L, AMEYE L, SAVELLI L, et al. Unilocular adnexal cysts with papillary projections but no other solid components: is there a diagnostic method that can classify them reliably as benign or malignant before surgery?[J]. Ultrasound Obstet Gynecol, 2013, 41(5): 570-581. DOI: 10.1002/uog.12294.
[26]
BERNARDIN L, DILKS P, LIYANAGE S, et al. Effectiveness of semi-quantitative multiphase dynamic contrast-enhanced MRI as a predictor of malignancy in complex adnexal masses: radiological and pathological correlation[J]. Eur Radiol, 2012, 22(4): 880-890. DOI: 10.1007/s00330-011-2331-z.
[27]
WONG B Z Y, CAUSA ANDRIEU P I, SONODA Y, et al. Improving risk stratification of indeterminate adnexal masses on MRI: what imaging features help predict malignancy in O-RADS MRI 4 lesions?[J/OL]. Eur J Radiol, 2023, 168: 111122 [2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/37806193/. DOI: 10.1016/j.ejrad.2023.111122.
[28]
HOTTAT N A, VAN PACHTERBEKE C, VANDEN HOUTE K, et al. Magnetic resonance scoring system for assessment of adnexal masses: added value of diffusion-weighted imaging including apparent diffusion coefficient map[J]. Ultrasound Obstet Gynecol, 2021, 57(3): 478-487. DOI: 10.1002/uog.22090.
[29]
LEI Y, SONG B, LIU L L, et al. Value of quantitative analysis of multiparameter MRI in differentiation of benign and malignant ovarian lesions with O-RADS MRI score 4[J]. Chin Comput Med Imag, 2023, 29(1): 50-57. DOI: 10.3969/j.issn.1006-5741.2023.01.012.
[30]
HOTTAT N A, BADR D A, VAN PACHTERBEKE C, et al. Added value of quantitative analysis of diffusion-weighted imaging in ovarian-adnexal reporting and data system magnetic resonance imaging[J]. J Magn Reson Imaging, 2022, 56(1): 158-170. DOI: 10.1002/jmri.28003.
[31]
KIM H J, LEE S Y, SHIN Y R, et al. The value of diffusion-weighted imaging in the differential diagnosis of ovarian lesions: a meta-analysis[J/OL]. PLoS One, 2016, 11(2): e0149465 [2024-06-12]. https://pubmed.ncbi.nlm.nih.gov/26907919/. DOI: 10.1371/journal.pone.0149465.
[32]
ZHANG M H, CHENG S S, JIN Y, et al. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer[J/OL]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188503 [2024-06-12]. https://pubmed.ncbi.nlm.nih.gov/33421585/. DOI: 10.1016/j.bbcan.2021.188503.
[33]
BUAMAH P. Benign conditions associated with raised serum CA-125 concentration[J]. J Surg Oncol, 2000, 75(4): 264-265. DOI: 10.1002/1096-9098(200012)75:4<264:aid-jso7>3.0.co;2-q.
[34]
SÖLÉTORMOS G, DUFFY M J, HASSAN S O ABU, et al. Clinical use of cancer biomarkers in epithelial ovarian cancer: updated guidelines from the European Group on tumor markers[J]. Int J Gynecol Cancer, 2016, 26(1): 43-51. DOI: 10.1097/IGC.0000000000000586.
[35]
ALI A T, AL-ANI O, AL-ANI F. Epidemiology and risk factors for ovarian cancer[J]. Prz Menopauzalny, 2023, 22(2): 93-104. DOI: 10.5114/pm.2023.128661.
[36]
THOMASSIN-NAGGARA I, BELGHITTI M, MILON A, et al. O-RADS MRI score: analysis of misclassified cases in a prospective multicentric European cohort[J]. Eur Radiol, 2021, 31(12): 9588-9599. DOI: 10.1007/s00330-021-08054-x.
[37]
HUCHON C, BOURDEL N, ABDEL WAHAB C, et al. Borderline ovarian tumors: French guidelines from the CNGOF. Part 1. Epidemiology, biopathology, imaging and biomarkers[J/OL]. J Gynecol Obstet Hum Reprod, 2021, 50(1): 101965 [2024-06-12]. https://pubmed.ncbi.nlm.nih.gov/33160106/. DOI: 10.1016/j.jogoh.2020.101965.
[38]
DEVINS K M, YOUNG R H, WATKINS J C. Sclerosing stromal tumour: a clinicopathological study of 100 cases of a distinctive benign ovarian stromal tumour typically occurring in the young[J]. Histopathology, 2022, 80(2): 360-368. DOI: 10.1111/his.14554.

PREV The value of T1 mapping combined with DWI in the early identification of renal interstitial fibrosis
NEXT Application research of imaging genomics in preoperative prediction of microsatellite stability of endometrial cancer using mp-MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn