Share:
Share this content in WeChat
X
Clinical Article
Application research of imaging genomics in preoperative prediction of microsatellite stability of endometrial cancer using mp-MRI
ZHAO Jifu  TIAN Yan  MA Mimi  CAO Xinshan 

Cite this article as: ZHAO J F, TIAN Y, MA M M, et al. Application research of imaging genomics in preoperative prediction of microsatellite stability of endometrial cancer using mp-MRI[J]. Chin J Magn Reson Imaging, 2024, 15(11): 110-116, 122. DOI:10.12015/issn.1674-8034.2024.11.017.


[Abstract] Objective To explore the predictive value of multi-parametric magnetic resonance imaging (mp-MRI) radiomics models for preoperative microsatellite instability (MSI) status in endometrial carcinoma (EC).Materials and Methods A retrospective analysis was conducted on clinical, pathological, and imaging data of 171 patients with pathologically confirmed EC. The patients were randomly divided into a training set and a validation set in a 7∶3 ratio. Using the 3D Slicer software, regions of interest (ROIs) were delineated on axial T2WI, diffusion-weighted imaging (DWI), and sagittal contrast-enhanced T1WI (CE-T1WI) delayed phase sequences, and radiomic features were extracted. Feature selection and calculation of radiomics scores (Rad-scores) were performed using intra-class correlation coefficient (ICC), least absolute shrinkage and selection operator (LASSO) algorithm, ten-fold cross-validation, and Pearson correlation test. Models were constructed using Rad-scores for individual sequences (T2WI model, DWI model, CE-T1WI model) and a combined model. Receiver operating characteristic (ROC) curves were plotted for each model, and model performance was evaluated using area under the curve (AUC), sensitivity, specificity, and other metrics. The models were validated on the test set. The DeLong test was used to compare the differences in AUC values among the models.Results Among the 171 EC patients, 35 had MSI and 136 had microsatellite stability (MSS). From the T2WI, DWI, and CE-T1WI sequences, 6, 3, and 3 features were retained, respectively. In the training set, the area under the curve (AUC) values for the T2WI model, DWI model, CE-T1WI model, and combine model were 0.869 [95% confidence interval, (CI): 0.772-0.938], 0.768 (95% CI: 0.645-0.865), 0.912 (95% CI: 0.830-0.966), and 0.927 (95% CI: 0.865-0.966), respectively. In the validation set, the AUC values were 0.736 (95% CI: 0.573-0.896), 0.714 (95% CI: 0.560-0.872), 0.856 (95% CI: 0.675-0.990), and 0.907 (95% CI: 0.813-0.977) for the T2WI model, DWI model, CE-T1WI model, and combine model, respectively. The DeLong test indicated that there were statistically significant differences in AUC values between the DWI model and both the combine model and the CE-T1WI model (P<0.05). No statistically significant differences were found between the AUC values of the other model pairs (P>0.05).Conclusions The radiomic model based on mp-MRI can effectively predict the MSI status of EC preoperatively. The combined model shows higher predictive performance compared to individual sequences, which helps in formulating personalized treatment plans and improving patient outcomes.
[Keywords] endometrial carcinoma;microsatellite stability;magnetic resonance imaging;multi-parametric;radiomics;prediction

ZHAO Jifu   TIAN Yan   MA Mimi   CAO Xinshan*  

Department of Radiology, Affiliated Hospital of Binzhou Medical College, Binzhou256603, China

Corresponding author: CAO X S, E-mail: byfycxs@126.com

Conflicts of interest   None.

Received  2024-08-07
Accepted  2024-11-10
DOI: 10.12015/issn.1674-8034.2024.11.017
Cite this article as: ZHAO J F, TIAN Y, MA M M, et al. Application research of imaging genomics in preoperative prediction of microsatellite stability of endometrial cancer using mp-MRI[J]. Chin J Magn Reson Imaging, 2024, 15(11): 110-116, 122. DOI:10.12015/issn.1674-8034.2024.11.017.

[1]
DIO C D, BOGANI G, DONATO V D, et al. The role of immunotherapy in advanced and recurrent MMR deficient and proficient endometrial carcinoma[J]. Gynecol Oncol, 2023, 169: 27-33. DOI: 10.1016/j.ygyno.2022.11.031.
[2]
QIU J Q, ZHAO Z Y, SUO H Y, et al. Linoleic acid exhibits anti-proliferative and anti-invasive activities in endometrial cancer cells and a transgenic model of endometrial cancer[J/OL]. Cancer Biol Ther, 2024, 25(1): 2325130 [2024-09-10]. https://doi.org/10.1080/15384047.2024.2325130. DOI: 10.1080/15384047.2024.2325130. DOI: 10.1080/15384047.2024.2325130.
[3]
GIANNELLA L, GRELLONI C, CIAVATTINI A. New insights into fertility-sparing treatment of endometrial cancer[J/OL]. J Obstet Gynaecol, 2024, 44(1): 2370747 [2024-09-11]. https://doi.org/10.1080/01443615.2024.2370747. DOI: 10.1080/01443615.2024.2370747.
[4]
GUHA P, SEN K, CHOWDHURY P, et al. Estrogen receptors as potential therapeutic target in endometrial cancer[J]. J Recept Signal Transduct Res, 2023, 43(1): 19-26. DOI: 10.1080/10799893.2023.2187643.
[5]
BI Q, BI G L, WANG J N, et al. Diagnostic accuracy of MRI for detecting cervical invasion in patients with endometrial carcinoma: a meta-analysis[J]. J Cancer, 2021, 12(3): 754-764. DOI: 10.7150/jca.52797.
[6]
SMITH D, KANG E Y, NELSON G S, et al. The association between body mass index and molecular subtypes in endometrial carcinoma[J/OL]. Gynecol Oncol Rep, 2024, 54: 101447 [2024-09-30]. https://doi.org/10.1016/j.gore.2024.101447. DOI: 10.1016/j.gore.2024.101447.
[7]
DE MATTIA E, POLESEL J, MEZZALIRA S, et al. Predictive and prognostic value of oncogene mutations and microsatellite instability in locally-advanced rectal cancer treated with neoadjuvant radiation-based therapy: a systematic review and meta-analysis[J/OL]. Cancers, 2023, 15(5): 1469 [2024-09-11]. https://doi.org/10.3390/cancers15051469. DOI: 10.3390/cancers15051469.
[8]
LIU T, HO C L, CHEN Y J, et al. A pilot study on the detection of microsatellite instability using long mononucleotide repeats in solid tumors[J/OL]. Oncol Lett, 2024, 28(3): 445 [2024-09-30]. https://doi.org/10.3892/ol.2024.14578. DOI: 10.3892/ol.2024.14578.
[9]
HASHMI A A, MUDASSIR G, HASHMI R N, et al. Microsatellite instability in endometrial carcinoma by immunohistochemistry, association with clinical and histopathologic parameters[J]. Asian Pac J Cancer Prev, 2019, 20(9): 2601-2606. DOI: 10.31557/APJCP.2019.20.9.2601.
[10]
MATSUBAYASHI H, OISHI T, SASAKI K, et al. Discordance of microsatellite instability and mismatch repair immunochemistry occurs depending on the cancer type[J]. Hum Pathol, 2023, 135: 54-64. DOI: 10.1016/j.humpath.2022.12.016.
[11]
MACKINNON A C, JOHNSON C M, ROBIN A, et al. Pathologic, immunologic, and clinical analysis of the microsatellite instability phenotype in endometrial carcinoma[J]. Hum Pathol, 2023, 139: 80-90. DOI: 10.1016/j.humpath.2023.05.011.
[12]
BANDO H, TSUKADA Y, INAMORI K, et al. Preoperative Chemoradiotherapy plus Nivolumab before Surgery in Patients with Microsatellite Stable and Microsatellite Instability-High Locally Advanced Rectal Cancer[J]. Clin Cancer Res, 2022, 28(6): 1136-1146. DOI: 10.1158/1078-0432.CCR-21-3213.
[13]
SONG Y F, GU Y, HU X, et al. Endometrial tumors with MSI-H and dMMR share a similar tumor immune microenvironment[J]. Onco Targets Ther, 2021, 14: 4485-4497. DOI: 10.2147/OTT.S324641.
[14]
LENGYEL C G. Microsatellite instability as a predictor of outcomes in colorectal cancer in the era of immune-checkpoint inhibitors[J]. Curr Drug Targets, 2021, 22(9): 968-976. DOI: 10.2174/1389450122666210325121322.
[15]
NÁDORVÁRI M L, LOTZ G, KULKA J, et al. Microsatellite instability and mismatch repair protein deficiency: equal predictive markers?[J/OL]. Pathol Oncol Res, 2024, 30: 1611719 [2024-10-01]. https://doi.org/10.3389/pore.2024.1611719. DOI: 10.3389/pore.2024.1611719.
[16]
PALMERI M, MEHNERT J, SILK A W, et al. Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers[J/OL]. ESMO Open, 2022, 7(1): 100336 [2024-10-01]. https://doi.org/10.1016/j.esmoop.2021.100336. DOI: 10.1016/j.esmoop.2021.100336.
[17]
SBARRA M, LUPINELLI M, BROOK O R, et al. Imaging of endometrial cancer[J]. Radiol Clin North Am, 2023, 61(4): 609-625. DOI: 10.1016/j.rcl.2023.02.007.
[18]
ZHANG J Y, ZHANG Q, WANG T T, et al. Multimodal MRI-based radiomics-clinical model for preoperatively differentiating concurrent endometrial carcinoma from atypical endometrial hyperplasia[J/OL]. Front Oncol, 2022, 12: 887546 [2024-09-16]. https://doi.org/10.3389/fonc.2022.887546. DOI: 10.3389/fonc.2022.887546.
[19]
WANG H H, XU Z Y, ZHANG H C, et al. The value of magnetic resonance imaging-based tumor shape features for assessing microsatellite instability status in endometrial cancer[J]. Quant Imaging Med Surg, 2022, 12(9): 4402-4413. DOI: 10.21037/qims-22-77.
[20]
WANG J, SONG P J, ZHANG M, et al. A prediction model based on deep learning and radiomics features of DWI for the assessment of microsatellite instability in endometrial cancer[J/OL]. Cancer Med, 2024, 13(16): e70046 [2024-09-17]. https://doi.org/10.1002/cam4.70046. DOI: 10.1002/cam4.70046.
[21]
LIN Z J, WANG T, LI H M, et al. Magnetic resonance-based radiomics nomogram for predicting microsatellite instability status in endometrial cancer[J]. Quant Imaging Med Surg, 2023, 13(1): 108-120. DOI: 10.21037/qims-22-255.
[22]
ZHANG Y, CHEN S J, WANG Y L, et al. Deep learning-based methods for classification of microsatellite instability in endometrial cancer from HE-stained pathological images[J]. J Cancer Res Clin Oncol, 2023, 149(11): 8877-8888. DOI: 10.1007/s00432-023-04838-4.
[23]
WANG C W, MUZAKKY H, FIRDI N P, et al. Deep learning to assess microsatellite instability directly from histopathological whole slide images in endometrial cancer[J/OL]. NPJ Digit Med, 2024, 7(1): 143 [2024-09-18]. https://doi.org/10.1038/s41746-024-01131-7. DOI: 10.1038/s41746-024-01131-7.
[24]
JIA Y J, HOU L N, ZHAO J T, et al. Radiomics analysis of multiparametric MRI for preoperative prediction of microsatellite instability status in endometrial cancer: a dual-center study[J/OL]. Front Oncol, 2024, 14: 1333020 [2024-09-16]. https://doi.org/10.3389/fonc.2024.1333020. DOI: 10.3389/fonc.2024.1333020.
[25]
DAI Y B, WANG J Y, ZHAO L Y, et al. Tumor molecular features predict endometrial cancer patients' survival after open or minimally invasive surgeries[J/OL]. Front Oncol, 2021, 11: 634857 [2024-09-13]. https://doi.org/10.3389/fonc.2021.634857. DOI: 10.3389/fonc.2021.634857.
[26]
LAWRENCE J, RICHER L, ARSENEAU J, et al. Mismatch repair universal screening of endometrial cancers (MUSE) in a Canadian cohort[J]. Curr Oncol, 2021, 28(1): 509-522. DOI: 10.3390/curroncol28010052.
[27]
XIAO J, WU Y. Microsatellite instability and its clinical significance in endometrial carcinoma[J]. Chin Gen Pract, 2022, 25(3): 275-279, 284. DOI: 10.12114/j.issn.1007-9572.2021.02.013.
[28]
MA X Y, WANG Q M, SUN C G, et al. Targeting TCF19 sensitizes MSI endometrial cancer to anti-PD-1 therapy by alleviating CD8+ T cell exhaustion via TRIM14-IFN-β axis[J/OL]. Cell Rep, 2023, 42(8): 112944 [2024-09-14]. https://doi.org/10.1016/j.celrep.2023.112944. DOI: 10.1016/j.celrep.2023.112944.
[29]
GATIUS S, VELASCO A, VARELA M, et al. Comparison of the Idylla™ MSI assay with the Promega™ MSI Analysis System and immunohistochemistry on formalin-fixed paraffin-embedded tissue of endometrial carcinoma: results from an international, multicenter study[J]. Virchows Arch, 2022, 480(5): 1031-1039. DOI: 10.1007/s00428-022-03291-x.
[30]
GONZALEZ-BOSQUET J, WEROHA S J, BAKKUM-GAMEZ J N, et al. Prognostic stratification of endometrial cancers with high microsatellite instability or no specific molecular profile[J/OL]. Front Oncol, 2023, 13: 1105504 [2024-09-14]. https://doi.org/10.3389/fonc.2023.1105504. DOI: 10.3389/fonc.2023.1105504.
[31]
MA C J, TIAN S F, CHEN L H, et al. Quantitative assessment of microsatellite instability in endometrial cancer by T2 mapping combined with mDixon-Quant multiparameter imaging[J]. Chin J Magn Reson Imag, 2022, 13(8): 48-54. DOI: 10.12015/issn.1674-8034.2022.08.009.
[32]
TIAN S F, LIU A L, CHEN L H, et al. Assessment of microsatellite instability status in endometrial cancer using amide proton transfer imaging and diffusion kurtosis imaging[J]. Chin J Clin Med Imag, 2022, 33(5): 345-349. DOI: 10.12117/jccmi.2022.05.009.
[33]
ONEDA E, ZANIBONI A. Adjuvant treatment of colon cancer with microsatellite instability - the state of the art[J/OL]. Crit Rev Oncol Hematol, 2022, 169: 103537 [2024-09-15]. https://doi.org/10.1016/j.critrevonc.2021.103537. DOI: 10.1016/j.critrevonc.2021.103537.
[34]
RATOVOMANANA T, NICOLLE R, COHEN R, et al. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability[J]. Ann Oncol, 2023, 34(8): 703-713. DOI: 10.1016/j.annonc.2023.05.010.
[35]
ZHANG Y, LIU J, WU C Y, et al. Preoperative prediction of microsatellite instability in rectal cancer using five machine learning algorithms based on multiparametric MRI radiomics[J/OL]. Diagnostics, 2023, 13(2): 269 [2024-09-16]. https://doi.org/10.3390/diagnostics13020269. DOI: 10.3390/diagnostics13020269.
[36]
LIN Z J, GU W Y, GUO Q H, et al. Multisequence MRI-based radiomics model for predicting POLE mutation status in patients with endometrial cancer[J/OL]. Br J Radiol, 2023, 96(1151): 20221063 [2024-09-12]. https://doi.org/10.1259/bjr.20221063. DOI: 10.1259/bjr.20221063.
[37]
VEERARAGHAVAN H, FRIEDMAN C F, DELAIR D F, et al. Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers[J/OL]. Sci Rep, 2020, 10(1): 17769 [2024-09-12]. https://doi.org/10.1038/s41598-020-72475-9. DOI: 10.1038/s41598-020-72475-9.
[38]
TIAN S F, WANG Y, ZHU W, et al. The value of multimodal functional magnetic resonance imaging in differentiating p53abn from p53wt endometrial carcinoma[J]. Acta Radiol, 2023, 64(11): 2948-2956. DOI: 10.1177/02841851231198911.
[39]
ZHANG F R, WANG T P, NING Y, et al. Using apparent diffusion coefficient (ADC) of endometrial cancer MRI to determine P53 molecular subtypes[J/OL]. Curr Med Imaging, 2024, 20: e15734056289592 [2024-09-13]. https://doi.org/10.2174/0115734056289592240408061811. DOI: 10.2174/0115734056289592240408061811.
[40]
VERMIJ L, JOBSEN J J, LEÓN-CASTILLO A, et al. Prognostic refinement of NSMP high-risk endometrial cancers using oestrogen receptor immunohistochemistry[J]. Br J Cancer, 2023, 128(7): 1360-1368. DOI: 10.1038/s41416-023-02141-0.
[41]
DE BIASE D, LENZI J, CECCARELLI C, et al. Spatial cancer-immune phenotypes predict shorter recurrence-free survival in the No specific molecular profile molecular subtype of endometrial carcinoma[J/OL]. Mod Pathol, 2024, 38(1): 100624 [2024-09-13]. https://doi.org/10.1016/j.modpat.2024.100624. DOI: 10.1016/j.modpat.2024.100624.

PREV Value of MRI combining with clinical indicators in optimizing the risk stratification of O-RADS MRI Score 4
NEXT Value of T2 Flair sequence based on deep learning in improving image quality of white matter hyperintensities
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn