Share:
Share this content in WeChat
X
Technical Article
Feasibility study of 3D high-resolution compressed sensing contrast-enhanced whole-body MRA imaging technology
LI Jingyang  FU Qing  LIU Xiaoming  WU Jiawei  JIN Teng  YU Qun  LEI Ziqiao  KONG Xiangchuang 

Cite this article as: LI J Y, FU Q, LIU X M, et al. Feasibility study of 3D high-resolution compressed sensing contrast-enhanced whole-body MRA imaging technology[J]. Chin J Magn Reson Imaging, 2024, 15(11): 123-129. DOI:10.12015/issn.1674-8034.2024.11.019.


[Abstract] Objective To investigate the feasibility and clinical value of 3D high-resolution compressed sensing contrast-enhanced whole-body magnetic resonance angiography (3D-CS-CE-MRA) with single injection and half-dose contrast agent.Materials and Methods A total of 83 patients who were suspected of systemic arterial disease and underwent MRI systemic vascular examination were prospectively enrolled and randomly divided into two groups, A and B, with 44 patients in group A and 39 patients in group B. Group A underwent 3D-CS-CE-MRA scanning with a total contrast agent volume of 0.15 mmol/kg injected at a flow rate of 2 mL/s, while group B underwent conventional 3D high-resolution contrast-enhanced whole-body magnetic resonance angiography (3D-CE-MRA) scanning with a total contrast agent volume of 0.3 mmol/kg administered in two doses of 0.15 mmol/kg each at a flow rate of 2 mL/s. Two experienced radiologists independently scored the qualitative image quality of 25 arterial segments,and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured for the common carotid artery, abdominal aorta, femoral artery, and popliteal artery. The independent samples t-test and the Wilcoxon rank sum test was used for statistical analysis.Results There was no significant difference in SNRs and CNRs for the common carotid artery,the femoral artery and the popliteal artery (all P>0.05), but there was significant difference in SNRs and CNRs for the abdominal aorta (all P<0.05), the average value of group B was higher than that of group A. The average score of 3D-CS-CE-MRA was better than 3D-CE-MRA [(3.41±0.52) vs. (3.18±0.48), P<0.05]. There was no significant difference in scores of abdominal aorta, renal artery, superior mesenteric artery, celiac trunk, common iliac artery, external iliac artery, anterior tibial artery, and peroneal artery (all P>0.05); there was no difference in image quality between group A and B. There was significant difference in scores of common carotid artery, brachiocephalic trunk, vertebral artery, thoracic aorta, femoral artery, popliteal artery, and posterior tibial artery (all P<0.05), the scores of group A was higher than group B.Conclusions Compared with conventional 3D-CE-MRA, 3D-CS-CE-MRA can quickly complete magnetic resonance whole-body vascular examination with only one contrast agent injection and subtractionless, under the premise of ensuring image quality, it reduces the amount of contrast agent, shortens the examination time, and improves patient tolerance, and has great clinical application value.
[Keywords] magnetic resonance imaging;compressed sensing;multi-echo Dixon;contrast-enhanced;whole-body magnetic resonance angiography

LI Jingyang1, 2   FU Qing1, 2   LIU Xiaoming1, 2   WU Jiawei1, 2   JIN Teng1, 2   YU Qun1, 2   LEI Ziqiao1, 2   KONG Xiangchuang1, 2*  

1 Department of Radiology, Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan430022, China

2 Hubei Province Key Laboratory of Molecular Imaging, Wuhan430022, China

Corresponding author: KONG X C, E-mail: hongke80@163.com

Conflicts of interest   None.

Received  2024-07-01
Accepted  2024-11-08
DOI: 10.12015/issn.1674-8034.2024.11.019
Cite this article as: LI J Y, FU Q, LIU X M, et al. Feasibility study of 3D high-resolution compressed sensing contrast-enhanced whole-body MRA imaging technology[J]. Chin J Magn Reson Imaging, 2024, 15(11): 123-129. DOI:10.12015/issn.1674-8034.2024.11.019.

[1]
WEIR-MCCALL J R, WHITE R D, RAMKUMAR P G, et al. Follow-up of atheroma burden with sequential whole body contrast enhanced MR angiography: a feasibility study[J]. Int J Cardiovasc Imaging, 2016, 32(5): 825-832. DOI: 10.1007/s10554-016-0842-z.
[2]
GANDY S J, LAMBERT M, BELCH J J, et al. Technical assessment of whole body angiography and cardiac function within a single MRI examination[J]. Clin Radiol, 2015, 70(6): 595-603. DOI: 10.1016/j.crad.2015.02.003.
[3]
GALANAKIS N, MARIS T G, KONTOPODIS N, et al. Perfusion imaging techniques in lower extremity peripheral arterial disease[J/OL]. Br J Radiol, 2022, 95(1135): 20211203 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/35522774/. DOI: 10.1259/bjr.20211203.
[4]
AL-LAMI B S, DLSHAD B, AL-TAWIL Y N, et al. Comparative diagnostic efficacy of cranial CT, CTA, and DSA in subarachnoid hemorrhage management: a systematic review and meta-analysis[J/OL]. J Med Imaging Radiat Sci, 2024, 55(3): 101427 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38772769/. DOI: 10.1016/j.jmir.2024.04.020.
[5]
ANDERSEN S B, SØRENSEN C M, JENSEN J A, et al. Microvascular imaging with super-resolution ultrasound[J]. Ultraschall Med, 2022, 43(6): 543-547. DOI: 10.1055/a-1937-6868.
[6]
GARCÍA-JIMÉNEZ R, ARROYO E, BORRERO C, et al. Evaluation of placental micro-vascularization by superb micro-vascular imaging Doppler in cases of intra-uterine growth restriction: a first step[J]. Ultrasound Med Biol, 2021, 47(6): 1631-1636. DOI: 10.1016/j.ultrasmedbio.2021.01.029.
[7]
LUO H R, YIN L X. Diagnostic value of superbmicrovascular imaging and color Doppler flow imaging in thyroid nodules: a Meta-analysis[J]. Chin J Med Ultrasound Electron Ed, 2021, 18(6): 554-563. DOI: 10.3877/cma.j.issn.1672-6448.2021.06.004.
[8]
Quality Control and Safety Management Committee of Chinese Society of Radiology Chinese Medical. Expert consensus of iodinated contrast agent use in patients with renal diseases[J]. Chin J Radiol, 2021, 55(6): 580-590. DOI: 10.3760/cma.j.cn112149-20201111-01226.
[9]
LAMBERT M A, WEIR-MCCALL J R, SALSANO M, et al. Prevalence and distribution of atherosclerosis in a low- to intermediate-risk population: assessment with whole-body MR angiography[J]. Radiology, 2018, 287(3): 795-804. DOI: 10.1148/radiol.2018171609.
[10]
KNOBLOCH G, LAUFF M T, HANKE M, et al. Non-contrast-enhanced MR-angiography (MRA) of lower extremity peripheral arterial disease at 3tesla: examination time and diagnostic performance of 2quiescent-interval single-shot MRA vsD. 3D fast spin-Echo MRA[J/OL]. Magn Reson Imaging, 2021, 76: 17-25 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33157187/. DOI: 10.1016/j.mri.2020.10.016.
[11]
ZHANG J, DING S H, ZHAO H L, et al. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA[J]. Eur Radiol, 2020, 30(11): 5805-5814. DOI: 10.1007/s00330-020-06989-1.
[12]
NAGPAL P, GRIST T M. MR angiography: contrast-enhanced acquisition techniques[J]. Magn Reson Imaging Clin N Am, 2023, 31(3): 493-501. DOI: 10.1016/j.mric.2023.04.007.
[13]
FENCHEL M, REQUARDT M, TOMASCHKO K, et al. Whole-body MR angiography using a novel 32-receiving-channel MR system with surface coil technology: first clinical experience[J]. J Magn Reson Imaging, 2005, 21(5): 596-603. DOI: 10.1002/jmri.20303.
[14]
STINSON E G, TRZASKO J D, FLETCHER J G, et al. Dual echo Dixon imaging with a constrained phase signal model and graph cuts reconstruction[J]. Magn Reson Med, 2017, 78(6): 2203-2215. DOI: 10.1002/mrm.26620.
[15]
ZHANG T, CHEN Y X, BAO S S, et al. Resolving phase ambiguity in dual-echo Dixon imaging using a projected power method[J/OL]. Magn Reson Med, 2017, 77(5): 2066-2076 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/27221766/. DOI: 10.1002/mrm.26287.
[16]
WEISS K J, EGGERS H, STEHNING C, et al. Feasibility and robustness of 3T magnetic resonance angiography using modified Dixon fat suppression in patients with known or suspected peripheral artery disease[J/OL]. Front Cardiovasc Med, 2020, 7: 549392 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33195449/. DOI: 10.3389/fcvm.2020.549392.
[17]
ZHANG X, CAO Y Z, MU X H, et al. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography[J]. Eur Radiol, 2020, 30(6): 3059-3065. DOI: 10.1007/s00330-020-06682-3.
[18]
KIDO T, HIRAI K, OGAWA R, et al. Comparison between conventional and compressed sensing cine cardiovascular magnetic resonance for feature tracking global circumferentialstrain assessment[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 10 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33618722/. DOI: 10.1186/s12968-021-00708-5.
[19]
DATTA S, PAUL J S. Adaptive continuation based smooth l0-norm approximation for compressed sensing MR image reconstruction[J/OL]. J Med Imaging, 2024, 11(3): 035003 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38827777/. DOI: 10.1117/1.JMI.11.3.035003.
[20]
OGAWA R, KIDO T, NAKAMURA M, et al. Comparison of compressed sensing and conventional coronary magnetic resonance angiography for detection of coronary artery stenosis[J/OL]. Eur J Radiol, 2020, 129: 109124 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/32563962/. DOI: 10.1016/j.ejrad.2020.109124.
[21]
ZHANG X Y, XIE G X, LU N, et al. 3D self-gated cardiac cine imaging at 3 Tesla using stack-of-stars bSSFP with tiny golden angles and compressed sensing[J]. Magn Reson Med, 2019, 81(5): 3234-3244. DOI: 10.1002/mrm.27612.
[22]
DE BUCK M H S, JEZZARD P, HESS A T. Optimization of undersampling parameters for 3D intracranial compressed sensing MR angiography at 7 T[J]. Magn Reson Med, 2022, 88(2): 880-889. DOI: 10.1002/mrm.29236.
[23]
JURKA M, MACOVA I, WAGNEROVA M, et al. Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time[J]. Quant Imaging Med Surg, 2024, 14(5): 3534-3543. DOI: 10.21037/qims-23-1488.
[24]
LU S S, QI M, ZHANG X, et al. Clinical evaluation of highly accelerated compressed sensing time-of-flight MR angiography for intracranial arterial stenosis[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1833-1838. DOI: 10.3174/ajnr.A5786.
[25]
DEMERATH T, BONATI L, MEKABATY A E, et al. High-resolution compressed-sensing time-of-flight MRA in a case of acute ICA/MCA dissection[J]. Neuroradiology, 2020, 62(6): 753-756. DOI: 10.1007/s00234-020-02395-y.
[26]
LEINER T, HABETS J, VERSLUIS B, et al. Subtractionless first-pass single contrast medium dose peripheral MR angiography using two-point Dixon fat suppression[J]. Eur Radiol, 2013, 23(8): 2228-2235. DOI: 10.1007/s00330-013-2833-y.
[27]
IKEDA H, OHNO Y, MURAYAMA K, et al. Compressed sensing and parallel imaging accelerated T2 FSE sequence for head and neck MR imaging: comparison of its utility in routine clinical practice[J/OL]. Eur J Radiol, 2021, 135: 109501 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33395594/. DOI: 10.1016/j.ejrad.2020.109501.
[28]
HAMILTON J, FRANSON D, SEIBERLICH N. Recent advances in parallel imaging for MRI[J]. Prog Nucl Magn Reson Spectrosc, 2017, 101: 71-95. DOI: 10.1016/j.pnmrs.2017.04.002.
[29]
MUSSARD E, HILBERT T, FORMAN C, et al. Accelerated MP2RAGE imaging using Cartesian phyllotaxis readout and compressed sensing reconstruction[J]. Magn Reson Med, 2020, 84(4): 1881-1894. DOI: 10.1002/mrm.28244.
[30]
LI B B, ZHANG H N, FANG X, et al. Impacts of compressed sensing acceleration factors on imaging quality of head 3D-T1WI and voxel-based morphometry quantitative parameters[J]. Chin J Med Imag Technol, 2022, 38(11): 1730-1734. DOI: 10.13929/j.issn.1003-3289.2022.11.031.
[31]
VIDYA SHANKAR R, HU H H, BIKKAMANE JAYADEV N, et al. 2-D magnetic resonance spectroscopic imaging of the pediatric brain using compressed sensing[J]. Pediatr Radiol, 2019, 49(13): 1798-1808. DOI: 10.1007/s00247-019-04495-1.
[32]
RIEDERER S J, STINSON E G, WEAVERS P T. Technical aspects of contrast-enhanced MR angiography: current status and new applications[J]. Magn Reson Med Sci, 2018, 17(1): 3-12. DOI: 10.2463/mrms.rev.2017-0053.
[33]
MIZOSHIRI T, YOSHIDA M, ODA S, et al. Non-contrast mDixon MR angiography of the neck: comparison with time-of-flight MR angiography in normal subjects[J/OL]. Medicine, 2021, 100(51): e28351 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34941146/. DOI: 10.1097/MD.0000000000028351.
[34]
GOO E H, KIM S S. Evaluating compressed SENSE (CS) MRI metal artifact reduction using pig L-spine phantom and transplant patients: focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR techniques[J]. Tomography, 2022, 8(5): 2298-2312. DOI: 10.3390/tomography8050192.

PREV Value of T2 Flair sequence based on deep learning in improving image quality of white matter hyperintensities
NEXT Comparison of respiratory-triggered and breath-holding sequences on 5.0 T magnetic resonance cholangiopancreatography
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn