Share:
Share this content in WeChat
X
Technical Article
Comparison of respiratory-triggered and breath-holding sequences on 5.0 T magnetic resonance cholangiopancreatography
HU Chong  WANG Peng  HE Ye  LI Shaopeng  YIN Dawei  ZONG Ran  DENG Kexue 

Cite this article as: HU C, WANG P, HE Y, et al. Comparison of respiratory-triggered and breath-holding sequences on 5.0 T magnetic resonance cholangiopancreatography[J]. Chin J Magn Reson Imaging, 2024, 15(11): 130-135, 152. DOI:10.12015/issn.1674-8034.2024.11.020.


[Abstract] Objective To compare the imaging effects of respiratory-triggered three-dimensional magnetic resonance cholangiopancreatography (RT-3D MRCP) and single breath-holding three-dimensional magnetic resonance cholangiopancreatography (BH-3D MRCP) in 5.0 T ultra-high field magnetic resonance imaging.Materials and Methods The results of 50 patients (23 males and 27 females) who underwent 5.0 T RT-3D MRCP and BH-3D MRCP were retrospectively analyzed. RT-3D MRCP and BH-3D MRCP images of all patients were subjectively scored and compared with objective data collection. The subjective score included the overall image quality, image artifacts, common bile duct, left hepatic duct, right hepatic duct, right anterior branch, right posterior branch, second and third branches, pancreatic duct and gallbladder duct. The objective data included image signal-to-noise ratio (SNR), contrast ratio (CR) and contrast-to-noise ratio (CNR). The paired t test and Wilcoxon signed rank test were used for intergroup analysis. Spearman correlation analysis was used to analyze the correlation between age, gender, abdominal pain symptoms, body mass index (BMI) and subjective scores.Results SNR, CR and CNR in RT-3D MRCP group were higher than those in BH-3D MRCP group (P<0.001). RT-3D MRCP was also superior to BH-3D MRCP sequences in overall image quality, image artifacts, common bile duct, left hepatic duct, right hepatic duct, right anterior branch, right posterior branch, second and third branch, pancreatic duct and gallbladder duct by subjective score (P<0.01). BMI was negatively correlated with RT-3D MRCP image artifacts (r=-0.330, P=0.019). The overall image quality and image artifacts score of RT-3D MRCP in patients with abdominal pain were lower than those without abdominal pain (P=0.011, 0.013).Conclusions At 5.0 T ultra-high field magnetic resonance imaging, RT-3D MRCP is better than BH-3D MRCP for general patients but BH-3D MRCP sequence can be given priority for patients with abdominal pain and excessive BMI.
[Keywords] magnetic resonance cholangiopancreatography;magnetic resonance imaging;respiratory-trigger;single breath-holding;image quality evaluation

HU Chong   WANG Peng   HE Ye   LI Shaopeng   YIN Dawei   ZONG Ran   DENG Kexue*  

Department of Radiology, the First Affiliated Hospital of USTC, Southern District of Anhui Provincial Hospital, Hefei230032, China

Corresponding author: DENG K X, E-mail: dengkexue-anhui@163.com

Conflicts of interest   None.

Received  2024-05-10
Accepted  2024-11-04
DOI: 10.12015/issn.1674-8034.2024.11.020
Cite this article as: HU C, WANG P, HE Y, et al. Comparison of respiratory-triggered and breath-holding sequences on 5.0 T magnetic resonance cholangiopancreatography[J]. Chin J Magn Reson Imaging, 2024, 15(11): 130-135, 152. DOI:10.12015/issn.1674-8034.2024.11.020.

[1]
MAHALINGAM N, RALLI G P, TROUT A T, et al. Comparison of quantitative 3D magnetic resonance cholangiography measurements obtained using three different image acquisition methods[J]. Abdom Radiol, 2022, 47(1): 196-208. DOI: 10.1007/s00261-021-03330-2.
[2]
VIDAL B P C, LAHAN-MARTINS D, PENACHIM T J, et al. MR cholangiopancreatography: what every radiology resident must know[J]. Radiographics, 2020, 40(5): 1263-1264. DOI: 10.1148/rg.2020200030.
[3]
KIDANEMARIAM S, GU J, YOON J H, et al. Cholangiocarcinoma: epidemiology and imaging-based review[J]. R I Med J, 2024, 107(5): 43-48.
[4]
TRAUNER M, HALILBASIC E, TATSCHER E, et al. Primary sclerosing cholangitis-Diagnosis and treatment 2024[J]. Inn Med, 2024, 65(4): 347-356. DOI: 10.1007/s00108-024-01697-0.
[5]
DAR F S, ABBAS Z, AHMED I, et al. National guidelines for the diagnosis and treatment of hilar cholangiocarcinoma[J]. World J Gastroenterol, 2024, 30(9): 1018-1042. DOI: 10.3748/wjg.v30.i9.1018.
[6]
AFZALPURKAR S, GIRI S, KASTURI S, et al. Magnetic resonance cholangiopancreatography versus endoscopic ultrasound for diagnosis of choledocholithiasis: an updated systematic review and meta-analysis[J]. Surg Endosc, 2023, 37(4): 2566-2573. DOI: 10.1007/s00464-022-09744-3.
[7]
CHHABRA M, GUPTA P, SHAH J, et al. Imaging diagnosis and management of fistulas in pancreatitis[J]. Dig Dis Sci, 2024, 69(2): 335-348. DOI: 10.1007/s10620-023-08173-z.
[8]
MATSUBAYASHI H, MORIZANE C. Familial and hereditary pancreatic cancer in Japan[J]. Fam Cancer, 2024, 23(3): 365-372. DOI: 10.1007/s10689-024-00395-y.
[9]
ITANI M, LALWANI N, ANDERSON M A, et al. Magnetic resonance cholangiopancreatography: pitfalls in interpretation[J]. Abdom Radiol, 2023, 48(1): 91-105. DOI: 10.1007/s00261-021-03323-1.
[10]
Abdominal Group of Chinese Society of Radiology Chinese Medical Association. Chinese expert consensus of scanning protocol and clinical application of magnetic resonance cholangiopancreatography[J]. Chin J Magn Reson Imaging, 2023, 14(4): 1-5, 21. DOI: 10.12015/issn.1674-8034.2023.04.001.
[11]
XU Y C, XU Z D, ZHANG J H, et al. The application of three-dimensional breath-hold gradient and spin-echo sequence in the MR cholangiopancreatography[J]. Chin J Radiol, 2021, 55(1): 64-69. DOI: 10.3760/cma.j.cn112149-20200215-00160.
[12]
CHIEN, CHIU F M, SHEN Y C, et al. Magnetic resonance cholangiopancreatography at 3T in a single breath-hold: comparative effectiveness between three-dimensional (3D) gradient- and spin-echo and two-dimensional (2D) thick-slab fast spin-echo acquisitions[J]. Quant Imaging Med Surg, 2020, 10(6): 1265-1274. DOI: 10.21037/qims.2020.04.14.
[13]
XU Y C, YIN L J, XU Z D, et al. Preliminary study on the diagnosis of 3D BH-GRASE sequence MRCP in extrahepatic cholelithiasis[J]. Chin J Magn Reson Imag, 2023, 14(11): 62-67, 83. DOI: 10.12015/issn.1674-8034.2023.11.011.
[14]
WANG M K, BAI Y, MENG N, et al. Comparison of conventional cholangiopancreatography and compressed sensing cholangiopancreatography in the display of biliary dilatation and pancreatic duct dilatation[J]. Chin J Magn Reson Imag, 2021, 12(3): 30-33. DOI: 10.12015/issn.1674-8034.2021.03.007.
[15]
WEI Z M, SONG Y K, HAN H W, et al. Comparison on three-dimensional MR cholangiopancreatography with breath-hold gradient-spin echo and respiratory gated triggering turbo-spin echo[J]. Chin J Med Imag Technol, 2020, 36(8): 1234-1238. DOI: 10.13929/j.issn.1003-3289.2020.08.027.
[16]
KIM Y, LEE E S, PARK H J, et al. Comparison between conventional breath-hold and respiratory-triggered magnetic resonance cholangiopancreatography with and without compressed sensing: cross-sectional study[J/OL]. Curr Med Imaging, 2023 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/37018526/. DOI: 10.2174/1573405620666230328093206.
[17]
MORIMOTO-ISHIKAWA D, HYODO T, TAKENAKA M, et al. Comparison between gradient and spin-echo (GRASE) and compressed sensing sequences for single breath-hold three-dimensional magnetic resonance cholangiopancreatography in patients with T1 hyperintense bile[J/OL]. Eur J Radiol, 2022, 150: 110279 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/35364450/. DOI: 10.1016/j.ejrad.2022.110279.
[18]
TARON J, WEISS J, NOTOHAMIPRODJO M, et al. Acceleration of magnetic resonance cholangiopancreatography using compressed sensing at 1.5 and 3 T: a clinical feasibility study[J]. Invest Radiol, 2018, 53(11): 681-688. DOI: 10.1097/RLI.0000000000000489.
[19]
BLAISE H, REMEN T, AMBARKI K, et al. Comparison of respiratory-triggered 3D MR cholangiopancreatography and breath-hold compressed-sensing 3D MR cholangiopancreatography at 1.5T and 3T and impact of individual factors on image quality[J/OL]. Eur J Radiol, 2021, 142: 109873 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/34371309/. DOI: 10.1016/j.ejrad.2021.109873.
[20]
SONG J S, KIM S H, KUEHN B, et al. Optimized breath-hold compressed-sensing 3D MR cholangiopancreatography at 3T: image quality analysis and clinical feasibility assessment[J/OL]. Diagnostics, 2020, 10(6): 376 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/32517113/. DOI: 10.3390/diagnostics10060376.
[21]
MEERALAM Y, AL-SHAMMARI K, YAGHOOBI M. Diagnostic accuracy of EUS compared with MRCP in detecting choledocholithiasis: a meta-analysis of diagnostic test accuracy in head-to-head studies[J]. Gastrointest Endosc, 2017, 86(6): 986-993. DOI: 10.1016/j.gie.2017.06.009.
[22]
ZHENG E S, XUE Y J, SUN B, et al. Feasibility of single breath holding 3D-SPACE MR cholangiopancreatography: a preliminary study[J]. Chin J Radiol, 2020, 54(8): 799-803. DOI: 10.3760/cma.j.cn112149-20190921-00438.
[23]
YOKOYAMA K, NAKAURA T, IYAMA Y, et al. Usefulness of 3D hybrid profile order technique with 3T magnetic resonance cholangiography: comparison of image quality and acquisition time[J]. J Magn Reson Imaging, 2016, 44(5): 1346-1353. DOI: 10.1002/jmri.25289.
[24]
ITATANI R, NAMIMOTO T, KUSUNOKI S, et al. Usefulness of the short-echo time cube sequence at 3-T magnetic resonance cholangiopancreatography: prospective comparison with the conventional 3-dimensional fast spin-echo sequence[J]. J Comput Assist Tomogr, 2016, 40(4): 551-556. DOI: 10.1097/RCT.0000000000000401.
[25]
YOSHIDA M, NAKAURA T, INOUE T, et al. Magnetic resonance cholangiopancreatography with GRASE sequence at 3.0T: does it improve image quality and acquisition time as compared with 3D TSE?[J]. Eur Radiol, 2018, 28(6): 2436-2443. DOI: 10.1007/s00330-017-5240-y.
[26]
LAM R, ZAKKO A, PETROV J C, et al. Gallbladder disorders: a comprehensive review[J/OL]. Dis Mon, 2021, 67(7): 101130 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/33478678/. DOI: 10.1016/j.disamonth.2021.101130.
[27]
SCHIRMER B D, WINTERS K L, EDLICH R F. Cholelithiasis and cholecystitis[J]. J Long Term Eff Med Implants, 2005, 15(3): 329-338. DOI: 10.1615/jlongtermeffmedimplants.v15.i3.90.
[28]
SHIRAISHI K, NAKAURA T, UETANI H, et al. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time[J]. Eur Radiol, 2023, 33(11): 7585-7594. DOI: 10.1007/s00330-023-09703-z.
[29]
SHI Z, ZHAO X Y, ZHU S, et al. Time-of-flight intracranial MRA at 3 T versus 5 T versus 7 T: visualization of distal small cerebral arteries[J/OL]. Radiology, 2022, 305(3): E72 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/36040333/. DOI: 10.1148/radiol.229027.
[30]
LADD M E, BACHERT P, MEYERSPEER M, et al. Pros and cons of ultra-high-field MRI/MRS for human application[J]. Prog Nucl Magn Reson Spectrosc, 2018, 109: 1-50. DOI: 10.1016/j.pnmrs.2018.06.001.
[31]
BOER A D, HOOGDUIN J M, BLANKESTIJN P J, et al. 7 T renal MRI: challenges and promises[J]. MAGMA, 2016, 29(3): 417-433. DOI: 10.1007/s10334-016-0538-3.
[32]
ZHANG Y F, SHENG R F, YANG C, et al. Higher field reduced FOV diffusion-weighted imaging for abdominal imaging at 5.0 Tesla: image quality evaluation compared with 3.0 Tesla[J/OL]. Insights Imaging, 2023, 14(1): 171 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/37840062/. DOI: 10.1186/s13244-023-01513-7.
[33]
LIN L, LIU P J, SUN G, et al. Bi-ventricular assessment with cardiovascular magnetic resonance at 5 Tesla: a pilot study[J/OL]. Front Cardiovasc Med, 2022, 9: 913707 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/36172590/. DOI: 10.3389/fcvm.2022.913707.
[34]
ZHANG Y F, YANG C, LIANG L, et al. Preliminary experience of 5.0 T higher field abdominal diffusion-weighted MRI: agreement of apparent diffusion coefficient with 3.0 T imaging[J]. J Magn Reson Imaging, 2022, 56(4): 1009-1017. DOI: 10.1002/jmri.28097.

PREV Feasibility study of 3D high-resolution compressed sensing contrast-enhanced whole-body MRA imaging technology
NEXT Clinical value of reduced field-of-view diffusion-weighted imaging based on composite sensitivity coding in cervical cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn