Share:
Share this content in WeChat
X
Technical Article
Clinical value of reduced field-of-view diffusion-weighted imaging based on composite sensitivity coding in cervical cancer
MEI Wancui  TANG Qian  LI Chengcheng  WANG Sai  CHEN Wen  LIU Weiyin  YANG Bo  XU Lin 

Cite this article as: MEI W C, TANG Q, LI C C, et al. Clinical value of reduced field-of-view diffusion-weighted imaging based on composite sensitivity coding in cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(11): 136-141, 159. DOI:10.12015/issn.1674-8034.2024.11.021.


[Abstract] Objective Compared to field of view optimized and constrained undistorted single-shot diffusion-weighted imaging (FOCUS DWI), we aim to explore the clinical diagnostic value for field of view optimized and constrained undistorted multiplexed sensitivity encoding diffusion-weighted imaging (FOCUS-MUSE DWI) in assessing cervical cancer.Materials and Methods In this prospective study, 55 cervical cancer patients confirmed by cytopathology between Febrary 2023 and September 2023 were included in the patient group, while 33 healthy volunteers with normal cervical MRI findings and negative cervical pathology were recruited in the control group. All participants underwent routine MRI, FOCUS-MUSE DWI, and FOCUS DWI scans. Two radiologists with over 15 years of experience in abdominal diagnosis independently evaluated DWI images in the patient group in a blinded fashion, subjective rating magnetic susceptibility artifacts, geometric distortion, anatomical detail, and overall image quality and objective calculating signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Apparent diffusion coefficient (ADC) values were also measured in both the patient and control groups. Differences in mean ADC values between two DWI sequences, and between groups and within groups across various International Federation of Gynecology and Obstetrics (FIGO) stages.Results The subjective ratings and objective measurements for the two DWI sequences in the patient group showed good inter-rater consistency [Kappa=0.824-0.942 and intraclass correlation coefficient (ICC)=0.792-0.971, accordingly]. FOCUS-MUSE DWI had significantly higher subjective scores and lower SNR than FOCUS DWI (P<0.001); however, CNR differences between sequences were not statistically significant (P=0.893). No significant differences in mean ADC values were found between the two DWI sequences (P=0.195), while significant differences were observed within the patient group (FIGO ⅠB~ⅡA stage vs. FIGO ⅡB~Ⅳ stage), where ADC values were negatively correlated with FIGO stage (FOCUS-MUSE DWI: r=-0.667, P<0.001; FOCUS DWI: r=-0.613, P<0.001). Both DWI sequences yielded lower ADC values in the patient group compared to the control group (P<0.001).Conclusions Compared to FOCUS DWI, FOCUS-MUSE DWI effectively reduces magnetic susceptibility artifacts and image distortion, resulting in higher image quality and clearer lesion details, which can better assist clinicians in lesion evaluation. Furthermore, ADC measurements servers an auxiliary tool in assessing FIGO staging in cervical cancer and in differentiating it from normal tissues.
[Keywords] cervical cancer;magnetic resonance imaging;diffusion weighted imaging;apparent diffusion coefficient;image quality

MEI Wancui1   TANG Qian2   LI Chengcheng3   WANG Sai1   CHEN Wen1   LIU Weiyin4   YANG Bo1   XU Lin1*  

1 Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan442000, China

2 Department of Radiology, Minda Hospital, Hubei Minzu University, Enshi445000, China

3 Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan442000, China

4 Department of Magnetic Resonance Research, GE Healthcare, Beijing100176, China

Corresponding author: XU L, E-mail: xulinst@sohu.com

Conflicts of interest   None.

Received  2024-08-08
Accepted  2024-11-10
DOI: 10.12015/issn.1674-8034.2024.11.021
Cite this article as: MEI W C, TANG Q, LI C C, et al. Clinical value of reduced field-of-view diffusion-weighted imaging based on composite sensitivity coding in cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(11): 136-141, 159. DOI:10.12015/issn.1674-8034.2024.11.021.

[1]
ZHANG Y T, RUMGAY H, LI M M, et al. Nasopharyngeal cancer incidence and mortality in 185 countries in 2020 and the projected burden in 2040: population-based global epidemiological profiling[J/OL]. JMIR Public Health Surveill, 2023, 9: e49968 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37728964/. DOI: 10.2196/49968.
[2]
BHATLA N, AOKI D, SHARMA D N, et al. Cancer of the cervix uteri: 2021 update[J]. Int J Gynaecol Obstet, 2021, 155(Suppl 1): 28-44. DOI: 10.1002/ijgo.13865.
[3]
ZHONG X, DONG T F, TAN Y, et al. Pelvic insufficiency fracture or bone metastasis after radiotherapy for cervical cancer? The added value of DWI for characterization[J]. Eur Radiol, 2020, 30(4): 1885-1895. DOI: 10.1007/s00330-019-06520-1.
[4]
YOSHIDA R, USUI K, KATSUNUMA Y, et al. Reducing contrast dose using virtual monoenergetic imaging for aortic CTA[J]. J Appl Clin Med Phys, 2020, 21(8): 272-277. DOI: 10.1002/acm2.12951.
[5]
BLAZIC I M, LILIC G B, GAJIC M M. Quantitative assessment of rectal cancer response to neoadjuvant combined chemotherapy and radiation therapy[J/OL]. Radiology, 2017, 282(2): 614 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/28099099/. DOI: 10.1148/radiol.2017164045.
[6]
WANG Y, CHEN X, PU H, et al. Roles of DWI and T2-weighted MRI volumetry in the evaluation of lymph node metastasis and lymphovascular invasion of stage ⅠB-ⅡA cervical cancer[J]. Clin Radiol, 2022, 77(3): 224-230. DOI: 10.1016/j.crad.2021.12.011.
[7]
CHEN M Z, FENG C, WANG Q X, et al. Comparison of reduced field-of-view diffusion-weighted imaging (DWI) and conventional DWI techniques in the assessment of Cervical carcinoma at 3.0T: image quality and FIGO staging[J/OL]. Eur J Radiol, 2021, 137: 109557 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/33549900/. DOI: 10.1016/j.ejrad.2021.109557.
[8]
PARK J J, KIM C K, PARK B K. Prediction of disease progression following concurrent chemoradiotherapy for uterine cervical cancer: value of post-treatment diffusion-weighted imaging[J]. Eur Radiol, 2016, 26(9): 3272-3279. DOI: 10.1007/s00330-015-4156-7.
[9]
MENG X Y, HU H L, WANG Y C, et al. Application of bi-planar reduced field-of-view DWI (rFOV DWI) in the assessment of muscle-invasiveness of bladder cancer[J/OL]. Eur J Radiol, 2021, 136: 109486 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/33434861/. DOI: 10.1016/j.ejrad.2020.109486.
[10]
LIU Q, ZHOU Z P. Principle and clinical application of high resolution magnetic resonance diffusion imaging with multiplexed sensitivity encoding[J]. Chin J Magn Reson Imag, 2022, 13(1): 167-170. DOI: 10.12015/issn.1674-8034.2022.01.040.
[11]
PENG Y, LI Z, TANG H, et al. Comparison of reduced field-of-view diffusion-weighted imaging (DWI) and conventional DWI techniques in the assessment of rectal carcinoma at 3.0T: image quality and histological T staging[J]. J Magn Reson Imaging, 2018, 47(4): 967-975. DOI: 10.1002/jmri.25814.
[12]
TAKEUCHI M, MATSUZAKI K, HARADA M. The feasibility of reduced field-of-view diffusion-weighted imaging in evaluating bladder invasion of uterine cervical cancer[J/OL]. Br J Radiol, 2022, 95(1129): 20210692 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/34705531/. DOI: 10.1259/bjr.20210692.
[13]
MAO L J, ZHANG X L, CHEN T T, et al. High-resolution reduced field-of-view diffusion-weighted magnetic resonance imaging in the diagnosis of cervical cancer[J]. Quant Imaging Med Surg, 2023, 13(6): 3464-3476. DOI: 10.21037/qims-22-579.
[14]
WU W C, MILLER K L. Image formation in diffusion MRI: a review of recent technical developments[J]. J Magn Reson Imaging, 2017, 46(3): 646-662. DOI: 10.1002/jmri.25664.
[15]
BAI Y, PEI Y G, LIU W V, et al. MRI: evaluating the application of FOCUS-MUSE diffusion-weighted imaging in the pancreas in comparison with FOCUS, MUSE, and single-shot DWIs[J]. J Magn Reson Imaging, 2023, 57(4): 1156-1171. DOI: 10.1002/jmri.28382.
[16]
NAKAMOTO A, ONISHI H, TSUBOYAMA T, et al. High-resolution diffusion-weighted imaging of the prostate using multiplexed sensitivity-encoding: comparison with the conventional and reduced field-of-view techniques[J/OL]. Magn Reson Med Sci, 2023 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37899224/. DOI: 10.2463/mrms.mp.2023-0039.
[17]
ZHA F X, FENG C, XU J, et al. Evaluation of multiplexed sensitivity encoding diffusion-weighted imaging in detecting uterine lesions: image quality optimization[J]. Magn Reson Imaging, 2024, 110: 17-22. DOI: 10.1016/j.mri.2024.03.003.
[18]
LI J, BAI Y C, WU L H, et al. Synthetic relaxometry combined with MUSE DWI and 3D-pCASL improves detection of hippocampal sclerosis[J/OL]. Eur J Radiol, 2022, 157: 110571 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/36327855/. DOI: 10.1016/j.ejrad.2022.110571.
[19]
OTA T, TSUBOYAMA T, ONISHI H, et al. Diagnostic accuracy of MRI for evaluating myometrial invasion in endometrial cancer: a comparison of MUSE-DWI, rFOV-DWI, and DCE-MRI[J]. Radiol Med, 2023, 128(6): 629-643. DOI: 10.1007/s11547-023-01635-4.
[20]
OLTHOF E, MOM C, VAN DER VELDEN J. More attention is needed for the corrigendum to the revised FIGO staging for carcinoma of the cervix uteri[J]. Int J Gynecol Cancer, 2020, 30: 1850-1850. DOI: 10.1136/ijgc-2020-001959.
[21]
MINKOFF D, GILL B S, KANG J, et al. Cervical cancer outcome prediction to high-dose rate brachytherapy using quantitative magnetic resonance imaging analysis of tumor response to external beam radiotherapy[J]. Radiother Oncol, 2015, 115(1): 78-83. DOI: 10.1016/j.radonc.2015.03.007.
[22]
KOYASU S, IIMA M, UMEOKA S, et al. The clinical utility of reduced-distortion readout-segmented echo-planar imaging in the head and neck region: initial experience[J]. Eur Radiol, 2014, 24(12): 3088-3096. DOI: 10.1007/s00330-014-3369-5.
[23]
JOHANSSON J, LAGERSTRAND K, IVARSSON L, et al. Brain diffusion MRI with multiplexed sensitivity encoding for reduced distortion in a pediatric patient population[J]. Magn Reson Imaging, 2022, 87: 97-103. DOI: 10.1016/j.mri.2022.01.003.
[24]
WINFIELD J M, ORTON M R, COLLINS D J, et al. Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI[J]. Eur Radiol, 2017, 27(2): 627-636. DOI: 10.1007/s00330-016-4417-0.
[25]
CELIK A. Effect of imaging parameters on the accuracy of apparent diffusion coefficient and optimization strategies[J]. Diagn Interv Radiol, 2016, 22(1): 101-107. DOI: 10.5152/dir.2015.14440.
[26]
MAIER S E, WALLSTRÖM J, LANGKILDE F, et al. Prostate cancer diffusion-weighted magnetic resonance imaging: does the choice of diffusion-weighting level matter?[J]. J Magn Reson Imaging, 2022, 55(3): 842-853. DOI: 10.1002/jmri.27895.
[27]
AN H, MA X D, PAN Z Y, et al. Qualitative and quantitative comparison of image quality between single-shot echo-planar and interleaved multi-shot echo-planar diffusion-weighted imaging in female pelvis[J]. Eur Radiol, 2020, 30(4): 1876-1884. DOI: 10.1007/s00330-019-06491-3.
[28]
LI G, LUO N, OUYANG J Y. Comparison of the value of multiplexed sensitivity encoding diffusion-weighted imaging with conventional diffusion-weighted imaging in brain examination[J]. Image Technol, 2022, 34(4): 25-28, 34. DOI: 10.3969/j.issn.1001-0270.2022.04.05.
[29]
LAWRENCE E M, ZHANG Y X, STAREKOVA J, et al. Reduced field-of-view and multi-shot DWI acquisition techniques: prospective evaluation of image quality and distortion reduction in prostate cancer imaging[J]. Magn Reson Imaging, 2022, 93: 108-114. DOI: 10.1016/j.mri.2022.08.008.
[30]
ZHANG Y X, HOLMES J, RABANILLO I, et al. Quantitative diffusion MRI using reduced field-of-view and multi-shot acquisition techniques: validation in phantoms and prostate imaging[J]. Magn Reson Imaging, 2018, 51: 173-181. DOI: 10.1016/j.mri.2018.04.006.
[31]
WARNDAHL B A, BORISCH E A, KAWASHIMA A, et al. Conventional vs. reduced field of view diffusion weighted imaging of the prostate: comparison of image quality, correlation with histology, and inter-reader agreement[J]. Magn Reson Imaging, 2018, 47: 67-76. DOI: 10.1016/j.mri.2017.10.011.
[32]
ABU-RUSTUM N R, YASHAR C M, BEAN S, et al. NCCN guidelines insights: cervical cancer, version 1.2020[J]. J Natl Compr Canc Netw, 2020, 18(6): 660-666. DOI: 10.6004/jnccn.2020.0027.
[33]
DENG B D, LI Z, HU D Y, et al. Clinical value of reduced field-of-view diffusion-weighted imaging in cervical cancer[J]. Chin J Magn Reson Imag, 2020, 11(7): 487-492. DOI: 10.12015/issn.1674-8034.2020.07.002.
[34]
SCHOB S, MEYER H J, DIECKOW J, et al. Histogram analysis of diffusion weighted imaging at 3T is useful for prediction of lymphatic metastatic spread, proliferative activity, and cellularity in thyroid cancer[J/OL]. Int J Mol Sci, 2017, 18(4): 821 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/28417929/. DOI: 10.3390/ijms18040821.

PREV Comparison of respiratory-triggered and breath-holding sequences on 5.0 T magnetic resonance cholangiopancreatography
NEXT Research progress of plasma biomarkers and the association with MRI neuroimaging and cognitive function in patients with Alzheimer,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn