Share:
Share this content in WeChat
X
Review
Research progress of plasma biomarkers and the association with MRI neuroimaging and cognitive function in patients with Alzheimer's disease
GE Danni  CHEN Futao  CHEN Jiu  ZHANG Xin  ZHANG Bing 

Cite this article as: GE D N, CHEN F T, CHEN J, et al. Research progress of plasma biomarkers and the association with MRI neuroimaging and cognitive function in patients with Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(11): 142-147. DOI:10.12015/issn.1674-8034.2024.11.022.


[Abstract] Alzheimer's disease (AD) is the most common type of dementia, and is characterized by the deposition of amyloid plaques and neurofibrillary tangles in the brain, leading to progressive cognitive decline. Plasma biomarkers reflect the characteristics and severity of AD pathological changes in the brain. In addition, with the development of neuroimaging technology, MRI can clarify the specific patterns of neuronal changes in AD pathology. Both of them play increasingly important roles in the early diagnosis of AD. This article reviews the main plasma biomarkers of AD and their association with MRI neuroimaging and cognitive function, with the aim of offering a novel perspective for the diagnosis, prediction and pathological mechanism understanding of AD.
[Keywords] Alzheimer's disease;plasma biomarkers;neuroimaging;magnetic resonance imaging;cognitive function

GE Danni   CHEN Futao   CHEN Jiu   ZHANG Xin   ZHANG Bing*  

Department of Medical Imaging, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing210008, China

Corresponding author: ZHANG B, E-mail: zhangbing_nanjing@nju.edu.cn

Conflicts of interest   None.

Received  2024-07-11
Accepted  2024-11-08
DOI: 10.12015/issn.1674-8034.2024.11.022
Cite this article as: GE D N, CHEN F T, CHEN J, et al. Research progress of plasma biomarkers and the association with MRI neuroimaging and cognitive function in patients with Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(11): 142-147. DOI:10.12015/issn.1674-8034.2024.11.022.

[1]
LIU W, GAUTHIER S, JIA J. Alzheimer's disease: current status and perspective[J]. Sci Bull (Beijing), 2022, 67(24): 2494-2497. DOI: 10.1016/j.scib.2022.12.006.
[2]
ZHANG Y, CHEN H, LI R, et al. Amyloid beta-based therapy for Alzheimer's disease: challenges, successes and future[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 248 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/37386015/. DOI: 10.1038/s41392-023-01484-7.
[3]
CHEN Y, YU Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation[J/OL]. J Neuroinflammation, 2023, 20(1): 165 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/37452321/. DOI: 10.1186/s12974-023-02853-3.
[4]
REISS A B, MUHIEDDINE D, JACOB B, et al. Alzheimer's disease treatment: The search for a breakthrough[J/OL]. Medicina (Kaunas), 2023, 59(6): 1084 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/37374288/. DOI: 10.3390/medicina59061084.
[5]
TANG X, GUO Z, CHEN G, et al. A multimodal meta-analytical evidence of functional and structural brain abnormalities across Alzheimer's disease spectrum[J/OL]. Ageing Res Rev, 2024, 95: 102240 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/38395200/. DOI: 10.1016/j.arr.2024.102240.
[6]
DELABY C, HIRTZ C, LEHMANN S. Overview of the blood biomarkers in Alzheimer's disease: Promises and challenges[J]. Rev Neurol (Paris), 2023, 179(3): 161-172. DOI: 10.1016/j.neurol.2022.09.003.
[7]
MANTELLATTO GRIGOLI M, PELEGRINI L N C, WHELAN R, et al. Present and future of blood-based biomarkers of Alzheimer's disease: Beyond the classics[J/OL]. Brain Res, 2024, 1830: 148812 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/38369085/. DOI: 10.1016/j.brainres.2024.148812.
[8]
BRAUN G A, DEAR A J, SANAGAVARAPU K, et al. Amyloid-beta peptide 37, 38 and 40 individually and cooperatively inhibit amyloid-beta 42 aggregation[J]. Chem Sci, 2022, 13(8): 2423-2439. DOI: 10.1039/d1sc02990h.
[9]
SIMRÉN J, LEUZY A, KARIKARI T K, et al. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer's disease[J]. Alzheimers Dement, 2021, 17(7): 1145-1156. DOI: 10.1002/alz.12283.
[10]
SHAHID S S, WEN Q T, RISACHER S L, et al. Hippocampal-subfield microstructures and their relation to plasma biomarkers in Alzheimer's disease[J]. Brain, 2022, 145(6): 2149-2160. DOI: 10.1093/brain/awac138.
[11]
GAO F, DAI L B, WANG Q, et al. Blood-based biomarkers for Alzheimer's disease: a multicenter-based cross-sectional and longitudinal study in China[J]. Sci Bull, 2023, 68(16): 1800-1808. DOI: 10.1016/j.scib.2023.07.009.
[12]
DONG Y, HOU T, LI Y, et al. Plasma amyloid-beta, total tau, and neurofilament light chain across the Alzheimer's disease clinical spectrum: A population-based study[J]. J Alzheimers Dis, 2023, 96(2): 845-858. DOI: 10.3233/JAD-230932.
[13]
HUANG L, HUANG Q, XIE F, et al. Neuropsychiatric symptoms in Alzheimer's continuum and their association with plasma biomarkers[J/OL]. J Affect Disorders, 2024, 348: 200-206 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/38159651/. DOI: 10.1016/j.jad.2023.12.062.
[14]
HSU J L, LEE W J, LIAO Y C, et al. Plasma biomarkers are associated with agitation and regional brain atrophy in Alzheimer's disease[J/OL]. Sci Rep-Uk, 2017, 7(1): 5035 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/28698646/. DOI: 10.1038/s41598-017-05390-1.
[15]
SCHINDLER S E, PETERSEN K K, SAEF B, et al. Head-to-head comparison of leading blood tests for Alzheimer's disease pathology[J/OL]. Alzheimers Dement, 2024 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/39394841/. DOI: 10.1002/alz.14315.
[16]
JANELIDZE S, TEUNISSEN C E, ZETTERBERG H. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer disease (vol 78, pg 1375, 2021)[J]. Jama Neurol, 2023, 80(4): 422-422. DOI: 10.1001/jamaneurol.2022.5184.
[17]
HU S, YANG C, LUO H. Current trends in blood biomarker detection and imaging for Alzheimer's disease[J/OL]. Biosens Bioelectron, 2022, 210: 114278 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/35460969/. DOI: 10.1016/j.bios.2022.114278.
[18]
SNELLMAN A, EKBLAD L L, ASHTON N J, et al. Head-to-head comparison of plasma p-tau181, p-tau231 and glial fibrillary acidic protein in clinically unimpaired elderly with three levels of APOE4-related risk for Alzheimer's disease[J/OL]. Neurobiol Dis, 2023, 183: 106175 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/37268240/. DOI: 10.1016/j.nbd.2023.106175.
[19]
LI T R, YAO Y X, JIANG X Y, et al. β-Amyloid in blood neuronal-derived extracellular vesicles is elevated in cognitively normal adults at risk of Alzheimer's disease and predicts cerebral amyloidosis[J/OL]. Alzheimers Research & Therapy, 2022, 14(1): 66 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/35550625/. DOI: 10.1186/s13195-022-01010-x.
[20]
WU Y, WANG Z, YIN J, et al. Association Plasma Abeta42 Levels with Alzheimer's Disease and Its Influencing Factors in Chinese Elderly Population[J]. Neuropsychiatr Dis Treat, 2022, 18: 1831-1841. DOI: 10.2147/NDT.S374722.
[21]
VERDE F. Tau proteins in blood as biomarkers of Alzheimer's disease and other proteinopathies[J]. J Neural Transm, 2022, 129(2): 239-259. DOI: 10.1007/s00702-022-02471-y.
[22]
ZETTERBERG H, BLENNOW K. Moving fluid biomarkers for Alzheimer's disease from research tools to routine clinical diagnostics[J/OL]. Mol Neurodegener, 2021, 16(1): 10 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/33608044/. DOI: 10.1186/s13024-021-00430-x.
[23]
RAJAN K B, AGGARWAL N T, MCANINCH E A, et al. Remote blood biomarkers of longitudinal cognitive outcomes in a population study[J]. Ann Neurol, 2020, 88(6): 1065-1076. DOI: 10.1002/ana.25874.
[24]
SUGARMAN M A, ZETTERBERG H, BLENNOW K, et al. A longitudinal examination of plasma neurofilament light and total tau for the clinical detection and monitoring of Alzheimer's disease[J]. Neurobiol Aging, 2020, 94: 60-70. DOI: 10.1016/j.neurobiolaging.2020.05.011.
[25]
RAJAN K B, MCANINCH E A, AGGARWAL N T, et al. Longitudinal changes in blood biomarkers of clinical Alzheimer disease in a biracial population sample[J/OL]. Neurology, 2023, 100(8): e874-e883 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/36446595/. DOI: 10.1212/WNL.0000000000201289.
[26]
MATTSSON N, ZETTERBERG H, JANELIDZE S, et al. Plasma tau in Alzheimer disease[J]. Neurology, 2016, 87(17): 1827-1835. DOI: 10.1212/WNL.0000000000003246.
[27]
LAING K K, SIMOES S, BAENA-CALDAS G P, et al. Cerebrovascular disease promotes tau pathology in Alzheimer's disease[J/OL]. Brain Commun, 2020, 2(2): fcaa132 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/33215083/. DOI: 10.1093/braincomms/fcaa132.
[28]
ALVAREZ-SANCHEZ L, PENA-BAUTISTA C, BAQUERO M, et al. Novel ultrasensitive detection technologies for the identification of early and minimally invasive Alzheimer's disease blood biomarkers[J]. J Alzheimers Dis, 2022, 86(3): 1337-1369. DOI: 10.3233/JAD-215093.
[29]
GAO F, LV X, DAI L, et al. A combination model of AD biomarkers revealed by machine learning precisely predicts Alzheimer's dementia: China Aging and Neurodegenerative Initiative (CANDI) study[J]. Alzheimers Dement, 2023, 19(3): 749-760. DOI: 10.1002/alz.12700.
[30]
OECKL P, ANDERL-STRAUB S, DANEK A, et al. Relationship of serum beta-synuclein with blood biomarkers and brain atrophy[J]. Alzheimers Dement, 2023, 19(4): 1358-1371. DOI: 10.1002/alz.12790.
[31]
BAIARDI S, QUADALTI C, MAMMANA A, et al. Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias[J/OL]. Alzheimers Res Ther, 2022, 14(1): 153 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/36221099/. DOI: 10.1186/s13195-022-01093-6.
[32]
HANSSON O, CULLEN N, ZETTERBERG H, et al. Plasma phosphorylated tau181 and neurodegeneration in Alzheimer's disease[J]. Ann Clin Transl Neurol, 2021, 8(1): 259-265. DOI: 10.1002/acn3.51253.
[33]
SALAMI A, ADOLFSSON R, ANDERSSON M, et al. Association of APOE varepsilon4 and plasma p-tau181 with preclinical Alzheimer's disease and longitudinal change in hippocampus function[J]. J Alzheimers Dis, 2022, 85(3): 1309-1320. DOI: 10.3233/JAD-210673.
[34]
YANG Z, SREENIVASAN K, TOLEDANO STROM E N, et al. Clinical and biological relevance of glial fibrillary acidic protein in Alzheimer's disease[J/OL]. Alzheimers Res Ther, 2023, 15(1): 190 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/37924152/. DOI: 10.1186/s13195-023-01340-4.
[35]
VAN EGROO M, RIPHAGEN J M, ASHTON N J, et al. Ultra-high field imaging, plasma markers and autopsy data uncover a specific rostral locus coeruleus vulnerability to hyperphosphorylated tau[J]. Mol Psychiatry, 2023, 28(6): 2412-2422. DOI: 10.1038/s41380-023-02041-y.
[36]
SAVASTANO A, FLORES D, KADAVATH H, et al. Disease-associated tau phosphorylation hinders tubulin assembly within tau condensates[J]. Angew Chem Int Edit, 2021, 60(2): 726-730. DOI: 10.1002/anie.202011157.
[37]
MIELKE M M, FRANK R D, DAGE J L, et al. Comparison of plasma phosphorylated tau species with amyloid and tau positron emission tomography, neurodegeneration, vascular pathology, and cognitive outcomes[J]. Jama Neurol, 2021, 78(9): 1108-1117. DOI: 10.1001/jamaneurol.2021.2293.
[38]
ASHTON N J, BRUM W S, DI MOLFETTA G, et al. Diagnostic accuracy of a plasma phosphorylated tau 217 immunoassay for Alzheimer disease pathology[J]. Jama Neurol, 2024, 81(3): 255-263. DOI: 10.1001/jamaneurol.2023.5319.
[39]
ASHTON N J, PASCOAL T A, KARIKARI T K, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology[J]. Acta Neuropathologica, 2021, 141(5): 709-724. DOI: 10.1007/s00401-021-02275-6.
[40]
KIVISÄKK P, FATIMA H A, CAHOON D S, et al. Clinical evaluation of a novel plasma pTau217 electrochemiluminescence immunoassay in Alzheimer's disease[J/OL]. Sci Rep-Uk, 2024, 14(1): 629 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/38182740/. DOI: 10.1038/s41598-024-51334-x.
[41]
CULLEN N C, LEUZY A, PALMQVIST S, et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations[J]. Nat Aging, 2021, 1(1): 114-123. DOI: 10.1038/s43587-020-00003-5.
[42]
PALMQVIST S, TIDEMAN P, CULLEN N, et al. Prediction of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures[J]. Nat Med, 2021, 27(6): 1034-1042. DOI: 10.1038/s41591-021-01348-z.
[43]
KIM K Y, SHIN K Y, CHANG K A. GFAP as a potential biomarker for Alzheimer's disease: A systematic review and meta-analysis[J/OL]. Cells-Basel, 2023, 12(9): 1309 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/37174709/. DOI: 10.3390/cells12091309.
[44]
TEUNISSEN C E, VERBERK I M W, THIJSSEN E H, et al. Blood-based biomarkers for Alzheimer's disease: towards clinical implementation[J]. Lancet Neurology, 2022, 21(1): 66-77. DOI: 10.1016/S1474-4422(21)00361-6.
[45]
LIU Z, SHI D, CAI Y, et al. Pathophysiology characterization of Alzheimer's disease in South China's aging population: for the greater-bay-area healthy aging brain study (GHABS)[J/OL]. Alzheimers Res Ther, 2024, 16(1): 84 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/38627753/. DOI: 10.1186/s13195-024-01458-z.
[46]
ALLY M, SUGARMAN M A, ZETTERBERG H, et al. Cross-sectional and longitudinal evaluation of plasma glial fibrillary acidic protein to detect and predict clinical syndromes of Alzheimer's disease[J/OL]. Alzheimers Dement (Amst), 2023, 15(4): e12492 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/37885919/. DOI: 10.1002/dad2.12492.
[47]
CICOGNOLA C, JANELIDZE S, HERTZE J, et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment[J/OL]. Alzheimers Res Ther, 2021, 13(1): 68 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/33773595/. DOI: 10.1186/s13195-021-00804-9.
[48]
ASKEN B M, VANDEVREDE L, ROJAS J C, et al. Lower white matter volume and worse executive functioning reflected in higher levels of plasma GFAP among older adults with and without cognitive impairment[J]. J Int Neuropsych Soc, 2022, 28(6): 588-599. DOI: 10.1017/S1355617721000813.
[49]
BETTCHER B M, OLSON K E, CARLSON N E, et al. Astrogliosis and episodic memory in late life: higher GFAP is related to worse memory and white matter microstructure in healthy aging and Alzheimer's disease[J]. Neurobiology of Aging, 2021, 103: 68-77. DOI: 10.1016/j.neurobiolaging.2021.02.012.
[50]
KHALIL M, TEUNISSEN C E, OTTO M, et al. Neurofilaments as biomarkers in neurological disorders[J]. Nat Rev Neurol, 2018, 14(10): 577-589. DOI: 10.1038/s41582-018-0058-z.
[51]
MATSUOKA K, HIRATA K, KOKUBO N, et al. Investigating neural dysfunction with abnormal protein deposition in Alzheimer's disease through magnetic resonance spectroscopic imaging, plasma biomarkers, and positron emission tomography[J/OL]. Neuroimage-Clin, 2024, 41: 103560 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/38147791/. DOI: 10.1016/j.nicl.2023.103560.
[52]
GONZALEZ-ORTIZ F, FERREIRA P C L, GONZÁLEZ-ESCALANTE A, et al. A novel ultrasensitive assay for plasma p-tau217: Performance in individuals with subjective cognitive decline and early Alzheimer's disease[J]. Alzheimers & Dementia, 2023, 20(2): 1239-1249. DOI: 10.1002/alz.13525.
[53]
ASHTON NJ, JANELIDZE S, KHLEIFAT A AL, et al. A multicentre validation study of the diagnostic value of plasma neurofilament light[J/OL]. Nat Commun, 2021, 12(1): 3400 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/34099648/. DOI: 10.1038/s41467-021-23620-z
[54]
KERN D, KHALIL M, PIRPAMER L, et al. Serum NfL in Alzheimer dementia: Results of the prospective dementia registry austria[J/OL]. Medicina (Kaunas), 2022, 58(3): 433 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/35334608/. DOI: 10.3390/medicina58030433.
[55]
WALSH P, SUDRE C H, FIFORD C M, et al. The age-dependent associations of white matter hyperintensities and neurofilament light in early- and late-stage Alzheimer's disease[J]. Neurobiol Aging, 2021, 97: 10-17. DOI: 10.1016/j.neurobiolaging.2020.09.008.
[56]
CHONG J S X, TAN Y J, KOH A J, et al. Plasma neurofilament light relates to divergent default and salience network connectivity in Alzheimer's disease and behavioral variant frontotemporal dementia[J]. J Alzheimers Dis, 2024, 99(3): 965-980. DOI: 10.3233/JAD-231251.
[57]
CHATTERJEE P, PEDRINI S, DOECKE J D, et al. Plasma Abeta42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer's disease continuum: A cross-sectional and longitudinal study in the AIBL cohort[J]. Alzheimers Dement, 2023, 19(4): 1117-1134. DOI: 10.1002/alz.12724.
[58]
MORI Y, TSUJI M, OGUCHI T, et al. Serum BDNF as a potential biomarker of Alzheimer's disease: Verification through assessment of serum, cerebrospinal fluid, and medial temporal lobe atrophy[J/OL]. Front Neurol, 2021, 12: 653267 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/33967943/. DOI: 10.3389/fneur.2021.653267.
[59]
WILCZYNSKA K, WASZKIEWICZ N. Diagnostic utility of selected serum dementia biomarkers: Amyloid beta-40, amyloid beta-42, tau protein, and YKL-40: A review[J/OL]. J Clin Med, 2020, 9(11): 3452 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/33121040/. DOI: 10.3390/jcm9113452.
[60]
PASE M P, HIMALI J J, PUERTA R, et al. Association of plasma YKL-40 With MRI, CSF, and cognitive markers of brain health and dementia[J/OL]. Neurology, 2024, 102(4): e208075 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/38290090/. DOI: 10.1212/WNL.0000000000208075.

PREV Clinical value of reduced field-of-view diffusion-weighted imaging based on composite sensitivity coding in cervical cancer
NEXT Advances in behavior and imaging studies of cognitive flexibility changes in neurodegenerative disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn