Share:
Share this content in WeChat
X
Review
Advances in behavior and imaging studies of cognitive flexibility changes in neurodegenerative disease
CAO Xinyu  YU Ying  HU Bo  YAN Linfeng  CUI Guangbin 

Cite this article as: CAO X Y, YU Y, HU B, et al. Advances in behavior and imaging studies of cognitive flexibility changes in neurodegenerative disease[J]. Chin J Magn Reson Imaging, 2024, 15(11): 148-152. DOI:10.12015/issn.1674-8034.2024.11.023.


[Abstract] Cognitive flexibility refers to the individual to be able to quickly adapt to changing circumstances, and in the process to switch quickly thinking mode and the ability of adaptation in response. In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis can be observed in the patients with flexibly shift their own mental processes and behavior to adapt the environment change ability dropped significantly (i.e, impaired cognitive flexibility). This article aims to review and summarize the previous research progress on behavioral assessment methods and imaging studies of cognitive flexibility in neurodegenerative diseases, so as to provide a theoretical basis for the diagnosis and treatment of cognitive flexibility decline caused by neurodegenerative diseases.
[Keywords] cognitive flexibility;neurodegenerative diseases;magnetic resonance imaging;Alzheimer's disease;Parkinson's disease;Wisconsin Card Sorting Test

CAO Xinyu1, 2   YU Ying2   HU Bo2   YAN Linfeng2   CUI Guangbin2*  

1 Medical School of Yan'an University, Yan'an716000, China

2 Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an710038, China

Corresponding author: CUI G B, E-mail: cgbtd@126.com

Conflicts of interest   None.

Received  2024-06-27
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.11.023
Cite this article as: CAO X Y, YU Y, HU B, et al. Advances in behavior and imaging studies of cognitive flexibility changes in neurodegenerative disease[J]. Chin J Magn Reson Imaging, 2024, 15(11): 148-152. DOI:10.12015/issn.1674-8034.2024.11.023.

[1]
CHENG Y J, LIN C H, LANE H Y. From menopause to neurodegeneration-molecular basis and potential therapy[J/OL]. Int J Mol Sci, 2021, 22(16): 8654 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/34445359/. DOI: 10.3390/ijms22168654.
[2]
ALQAHTANI T, DEORE S L, KIDE A A, et al. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease, and Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis-An updated review[J/OL]. Mitochondrion, 2023, 71: 83-92 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37269968/. DOI: 10.1016/j.mito.2023.05.007.
[3]
GONZALES M M, GARBARINO V R, POLLET E, et al. Biological aging processes underlying cognitive decline and neurodegenerative disease[J/OL]. J Clin Invest, 2022, 132(10): e158453 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/35575089/. DOI: 10.1172/JCI158453.
[4]
WEINTRAUB D, AARSLAND D, BIUNDO R, et al. Management of psychiatric and cognitive complications in Parkinson's disease[J/OL]. BMJ, 2022, 379: e068718 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/36280256/. DOI: 10.1136/bmj-2021-068718.
[5]
LUCIA N D, PELUSO S, ROCA A, et al. Perseverative behavior on verbal fluency task in patients with Huntington's disease: a retrospective study on a large patient sample[J]. Arch Clin Neuropsychol, 2020, 35(4): 358-364. DOI: 10.1093/arclin/acz052.
[6]
MONTEIRO A R, BARBOSA D J, REMIAO F, et al. Alzheimer's disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs[J/OL]. Biochem Pharmacol. 2023, 211: 115522 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/36996971/. DOI: 10.1016/j.bcp.2023.115522.
[7]
MANDAL M, KHAN A. Attention switching deficit in patients of Parkinson's disease who experience freezing of gait[J]. Appl Neuropsychol Adult, 2023, 30(4): 389-400. DOI: 10.1080/23279095.2021.1951268.
[8]
ZHANG X, KONG X Y, WANG X Q, et al. Analysis on executive dysfunction of patients with multiple system atrophy and Parkinson's disease[J]. Chin J Contemp Neurol Neurosurg, 2016, 16(5): 275-279. DOI: 10.3969/j.issn.1672-6731.2016.05.006.
[9]
PASSERI E, ELKHOURY K, MORSINK M, et al. Alzheimer's disease: treatment strategies and their limitations[J/OL]. Int J Mol Sci, 2022, 23(22): 13954 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/36430432/. DOI: 10.3390/ijms232213954.
[10]
PAHLAVANI H A. Exercise therapy to prevent and treat Alzheimer's disease[J/OL]. Front Aging Neurosci, 2023, 15: 1243869 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37600508/. DOI: 10.3389/fnagi.2023.1243869.
[11]
KIM R, LEE T L, LEE H, et al. Effects of physical exercise interventions on cognitive function in Parkinson's disease: an updated systematic review and meta-analysis of randomized controlled trials[J/OL]. Parkinsonism Relat Disord, 2023, 117: 105908 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37922635/. DOI: 10.1016/j.parkreldis.2023.105908.
[12]
ZENG Y N, WANG J Y, CAI X Y, et al. Effects of physical activity interventions on executive function in older adults with dementia: a meta-analysis of randomized controlled trials[J/OL]. Geriatr Nurs, 2023, 51: 369-377 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37127013/. DOI: 10.1016/j.gerinurse.2023.04.012.
[13]
HE S H, BAIG F, MERLA A, et al. Beta-triggered adaptive deep brain stimulation during reaching movement in Parkinson's disease[J]. Brain, 2023, 146(12): 5015-5030. DOI: 10.1093/brain/awad233.
[14]
BUCUR M, PAPAGNO C. Deep brain stimulation in parkinson disease: a meta-analysis of the long-term neuropsychological outcomes[J]. Neuropsychol Rev, 2023, 33(2): 307-346. DOI: 10.1007/s11065-022-09540-9.
[15]
HU X, MEIER M, PRUESSNER J. Challenges and opportunities of diagnostic markers of Alzheimer's disease based on structural magnetic resonance imaging[J/OL]. Brain Behav, 2023, 13(3): e2925 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/36795041/. DOI: 10.1002/brb3.2925.
[16]
MAO C H, YOU H, HOU B, et al. Differentiation of Alzheimer's disease from frontotemporal dementia and mild cognitive impairment based on arterial spin labeling magnetic resonance imaging: a pilot cross-sectional study from PUMCH dementia cohort[J]. J Alzheimers Dis, 2023, 93(2): 509-519. DOI: 10.3233/JAD-221023.
[17]
UDDIN L Q. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations[J]. Nat Rev Neurosci, 2021, 22(3): 167-179. DOI: 10.1038/s41583-021-00428-w.
[18]
BORGHESI F, MANCUSO V, BRUNI F, et al. Mental flexibility assessment: a research protocol for patients with Parkinson's Disease and Anorexia Nervosa[J/OL]. PLoS One, 2023, 18(12): e0293921 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/38117804/. DOI: 10.1371/journal.pone.0293921.
[19]
HOWLETT C A, WEWEGE M A, BERRYMAN C, et al. Same room - different windows? A systematic review and meta-analysis of the relationship between self-report and neuropsychological tests of cognitive flexibility in healthy adults[J/OL]. Clin Psychol Rev, 2021, 88: 102061 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/34332263/. DOI: 10.1016/j.cpr.2021.102061.
[20]
CORBO I, TROISI G, MARSELLI G, et al. The role of cognitive flexibility on higher level executive functions in mild cognitive impairment and healthy older adults[J/OL]. BMC Psychol, 2024, 12(1): 317 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/38816884/. DOI: 10.1186/s40359-024-01807-5.
[21]
SCHMITZ F, KRÄMER R J. Task switching: on the relation of cognitive flexibility with cognitive capacity[J/OL]. J Intell, 2023, 11(4): 68 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37103253/. DOI: 10.3390/jintelligence11040068.
[22]
LEE B, CAI W D, YOUNG C B, et al. Latent brain state dynamics and cognitive flexibility in older adults[J/OL]. Prog Neurobiol, 2022, 208: 102180 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/34627994/. DOI: 10.1016/j.pneurobio.2021.102180.
[23]
BEBER B C, LIEDTKE F V, OLIVEIRA F S, et al. Clustering and switching analysis of verb fluency in individuals with Alzheimer's disease[J/OL]. Codas, 2023, 35(2): e20210179 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37075412/. DOI: 10.1590/2317-1782/20232021179pt.
[24]
DANN K M, VELDRE A, MILES S, et al. Measuring cognitive flexibility in anorexia nervosa: Wisconsin Card Sorting Test versus cued task-switching[J/OL]. Eat Weight Disord, 2023, 28(1): 60 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37463996/. DOI: 10.1007/s40519-023-01589-6.
[25]
EVANS J, OLM C, MCCLUSKEY L, et al. Impaired cognitive flexibility in amyotrophic lateral sclerosis[J]. Cogn Behav Neurol, 2015, 28(1): 17-26. DOI: 10.1097/WNN.0000000000000049.
[26]
HAFIZ N J, LOHSE A, HAAS R, et al. Trail making test error analysis in subjective cognitive decline, mild cognitive impairment, and Alzheimer's dementia with and without depression[J]. Arch Clin Neuropsychol, 2023, 38(1): 25-36. DOI: 10.1093/arclin/acac065.
[27]
KEHA E, KALANTHROFF E. What is word? The boundary conditions of task conflict in the Stroop task[J]. Psychol Res, 2023, 87(4): 1208-1218. DOI: 10.1007/s00426-022-01738-z.
[28]
LANGE F, BRÜCKNER C, KNEBEL A, et al. Executive dysfunction in Parkinson's disease: a meta-analysis on the Wisconsin Card Sorting Test literature[J/OL]. Neurosci Biobehav Rev, 2018, 93: 38-56 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/29944959/. DOI: 10.1016/j.neubiorev.2018.06.014.
[29]
KUDLICKA A, CLARE L, HINDLE J V. Executive functions in Parkinson's disease: systematic review and meta-analysis[J]. Mov Disord, 2011, 26(13): 2305-2315. DOI: 10.1002/mds.23868.
[30]
LANGE F, VOGTS M B, SEER C, et al. Impaired set-shifting in amyotrophic lateral sclerosis: an event-related potential study of executive function[J]. Neuropsychology, 2016, 30(1): 120-134. DOI: 10.1037/neu0000218.
[31]
CHU C B, PAN W G, REN Y P, et al. Executive function deficits and medial temporal lobe atrophy in late-life depression and Alzheimer's disease: a comparative study[J/OL]. Front Psychiatry, 2023, 14: 1243894 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37720905/. DOI: 10.3389/fpsyt.2023.1243894.
[32]
KÜBLER D, KOBYLECKI C, MCDONALD K R, et al. Structural and metabolic correlates of neuropsychological profiles in multiple system atrophy and Parkinson's disease[J/OL]. Parkinsonism Relat Disord, 2023, 107: 105277 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/36621156/. DOI: 10.1016/j.parkreldis.2022.105277.
[33]
HSIEH Y H, CHEN K J, WANG C C, et al. Cognitive and motor components of response speed in the stroop test in Parkinson's disease patients[J]. Kaohsiung J Med Sci, 2008, 24(4): 197-203. DOI: 10.1016/S1607-551X(08)70117-7.
[34]
BIRDSILL A C, KOSCIK R L, JONAITIS E M, et al. Regional white matter hyperintensities: aging, Alzheimer's disease risk, and cognitive function[J]. Neurobiol Aging, 2014, 35(4): 769-776. DOI: 10.1016/j.neurobiolaging.2013.10.072.
[35]
BENDLIN B B, FITZGERALD M E, RIES M L, et al. White matter in aging and cognition: a cross-sectional study of microstructure in adults aged eighteen to eighty-three[J]. Dev Neuropsychol, 2010, 35(3): 257-277. DOI: 10.1080/87565641003696775.
[36]
LEUNISSEN I, COXON J P, CAEYENBERGHS K, et al. Task switching in traumatic brain injury relates to cortico-subcortical integrity[J]. Hum Brain Mapp, 2014, 35(5): 2459-2469. DOI: 10.1002/hbm.22341.
[37]
LIU F, NING R P, YU Q R, et al. Interhemispheric structural connectivity abnormalities in Alzheimer's disease and mild cognitive impairment: A DTI-based study[J]. Chin J Magn Reson Imaging. 2023, 14(6): 9-17. DOI: 10.12015/issn.1674-8034.2023.06.002.
[38]
MORRIS H R, SPILLANTINI M G, SUE C M, et al. The pathogenesis of Parkinson's disease[J]. Lancet, 2024, 403(10423): 293-304. DOI: 10.1016/S0140-6736(23)01478-2.
[39]
MONCHI O, PETRIDES M, DOYON J, et al. Neural bases of set-shifting deficits in Parkinson's disease[J]. J Neurosci, 2004, 24(3): 702-710. DOI: 10.1523/JNEUROSCI.4860-03.2004.
[40]
MONCHI O, HANGANU A, BELLEC P. Markers of cognitive decline in PD: the case for heterogeneity[J/OL]. Parkinsonism Relat Disord, 2016, 24: 8-14 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/26774536/. DOI: 10.1016/j.parkreldis.2016.01.002.
[41]
ALZAID H, ETHOFER T, HOBERT M A, et al. Distinct relationship between cognitive flexibility and white matter integrity in individuals at risk of Parkinson's disease[J/OL]. Front Aging Neurosci, 2020, 12: 250 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/32903902/. DOI: 10.3389/fnagi.2020.00250.
[42]
BROWN G, HAKUN J, LEWIS M M, et al. Frontostriatal and limbic contributions to cognitive decline in Parkinson's disease[J]. J Neuroimaging, 2023, 33(1): 121-133. DOI: 10.1111/jon.13045.
[43]
BOTTERO V, SANTIAGO J A, QUINN J P, et al. Key disease mechanisms linked to amyotrophic lateral sclerosis in spinal cord motor neurons[J/OL]. Front Mol Neurosci, 2022, 15: 825031 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/35370543/. DOI: 10.3389/fnmol.2022.825031.
[44]
WITIUK K, FERNANDEZ-RUIZ J, MCKEE R, et al. Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task[J]. J Neurosci, 2014, 34(43): 14260-14271. DOI: 10.1523/JNEUROSCI.1111-14.2014.
[45]
MARCUS R. What is Huntington disease?[J/OL]. JAMA, 2023, 330(10): 1014 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37603337/. DOI: 10.1001/jama.2023.13024.
[46]
LANGLEY C, GREGORY S, OSBORNE-CROWLEY K, et al. Fronto-striatal circuits for cognitive flexibility in far from onset Huntington's disease: evidence from the Young Adult Study[J]. J Neurol Neurosurg Psychiatry, 2021, 92(2): 143-149. DOI: 10.1136/jnnp-2020-324104.
[47]
PADRON-RIVERA G, ROMERO-MOLINA A O, DIAZ R, et al. Frontostriatal circuits alterations associated with cognitive flexibility deterioration in Huntington's disease[J]. Neurodegener Dis, 2022, 22(1): 24-28. DOI: 10.1159/000526778.
[48]
WAGGESTAD T H, KIRSEBOM B E, STROBEL C, et al. Improving validity of the trail making test with alphabet support[J/OL]. Front Psychol, 2023, 14: 1227578 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37575421/. DOI: 10.3389/fpsyg.2023.1227578.
[49]
TRAMBAIOLLI L R, PENG X L, LEHMAN J F, et al. Anatomical and functional connectivity support the existence of a salience network node within the caudal ventrolateral prefrontal cortex[J/OL]. eLife, 2022, 11: e76334 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/35510840/. DOI: 10.7554/eLife.76334.
[50]
WHEELOCK M D, STRAIN J F, MANSFIELD P, et al. Brain network decoupling with increased serum neurofilament and reduced cognitive function in Alzheimer's disease[J]. Brain, 2023, 146(7): 2928-2943. DOI: 10.1093/brain/awac498.

PREV Research progress of plasma biomarkers and the association with MRI neuroimaging and cognitive function in patients with Alzheimer,s disease
NEXT Magnetic resonance imaging research progress of effective brain network connectivity in patients with major depressive disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn