Share:
Share this content in WeChat
X
Review
The progress of brain structural and functional magnetic resonance imaging in patients with obstructive sleep apnea
SUN Liqiang  LI Lin  HU Jing  LIU Liying  CUI Kaige  YANG Jiping  JIA Juan  YU Jiaqi 

Cite this article as: SUN L Q, LI L, HU J, et al. The progress of brain structural and functional magnetic resonance imaging in patients with obstructive sleep apnea[J]. Chin J Magn Reson Imaging, 2024, 15(11): 160-168. DOI:10.12015/issn.1674-8034.2024.11.025.


[Abstract] Obstructive sleep apnea (OSA) is the most common sleep disorder with abnormal brain structure and function, leading to a complication of cognitive impairment. In recent years, MRI has been flourishing, including voxel based morphometry (VBM), diffusion tensor imaging (DTI), diffusion tensor imaging analysis along the perivascular space (DTI-ALPS), diffusion kurtosis imaging (DKI), resting state functional magnetic resonance imaging (rs-fMRI), arterial spin labeling (ASL), magnetic resonance spectroscopy (MRS). Especially newly emerging DTI-ALPS and DKI techniques have provided a more novel perspective and broader field of view. DTI-ALPS can evaluate the function of the cerebral lymphatic system non-invasively and reveal the mechanism of lymphatic metabolism disorders in OSA patients, which provide a new perspective for the pathological and physiological mechanism of OSA patients, and provide new ideas for the improvement of treatment plans. DKI could demonstrate microstructural abnormalities of the brain more sensitively before changes might be found with conventional imaging, that provide a basis for earlier diagnosis and treatment of OSA patients. This article reviews the progress of cerebral structural and functional magnetic resonance imaging of OSA patients in recent years, aiming to reveal their neuroimaging changes and pathophysiological mechanisms, and to provide basis for early diagnosis, treatment, and improvement of treatment plans for OSA patients.
[Keywords] obstructive sleep apnea;magnetic resonance imaging;resting state functional magnetic resonance imaging;diffusion tensor imaging analysis along the perivascular space;diffusion kurtosis imaging;glymphatic system

SUN Liqiang1   LI Lin2   HU Jing3   LIU Liying3   CUI Kaige3   YANG Jiping3*   JIA Juan3   YU Jiaqi3  

1 Department of Medical Imaging, Hebei General Hospital, Shijiazhuang050051, China

2 Department of Otolaryngology, Hebei General Hospital, Shijiazhuang050051, China

3 Department of Medical Imaging, the Second Hospital of Hebei Medical University, Shijiazhuang050000, China

Corresponding author: YANG J P, E-mail: ran0511@sina.com

Conflicts of interest   None.

Received  2024-07-26
Accepted  2024-11-08
DOI: 10.12015/issn.1674-8034.2024.11.025
Cite this article as: SUN L Q, LI L, HU J, et al. The progress of brain structural and functional magnetic resonance imaging in patients with obstructive sleep apnea[J]. Chin J Magn Reson Imaging, 2024, 15(11): 160-168. DOI:10.12015/issn.1674-8034.2024.11.025.

[1]
BENJAFIELD A V, AYAS N T, EASTWOOD P R, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8): 687-698. DOI: 10.1016/S2213-2600(19)30198-5.
[2]
KAPUR V K, AUCKLEY D H, CHOWDHURI S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline[J]. J Clin Sleep Med, 2017, 13(3): 479-504. DOI: 10.5664/jcsm.6506.
[3]
URBANIK D, MARTYNOWICZ H, MAZUR G, et al. Environmental factors as modulators of the relationship between obstructive sleep apnea and lesions in the circulatory system[J/OL]. J. Clin. Med, 2020, 9(3): 836 [2024-07-26]. https://www.mdpi.com/2077-0383/9/3/836. DOI: 10.3390/jcm9030836.
[4]
HUI M, LI Y, YE J, et al. Obstructive sleep apnea-hypopnea syndrome (OSAHS) comorbid with diabetes rather than OSAHS alone serves an independent risk factor for chronic kidney disease (CKD)[J]. Ann Palliat Med, 2020, 9(3): 858-869. DOI: 10.21037/apm.2020.03.21.
[5]
LIGUORI C, MAESTRI M, SPANETTA M, et al. Sleep-disordered breathing and the risk of Alzheimer's disease[J/OL]. Sleep Med Rev, 2021, 55: 101375 [2024-07-26]. https://www.sciencedirect.com/science/article/abs/pii/S1087079220301180?via%3Dihub. DOI: 10.1016/j.smrv.2020.101375.
[6]
ELFIL M, BAHBAH E I, ATTIA M M, et al. Impact of obstructive sleep apnea on cognitive and motor functions in Parkinson's disease[J]. Mov Disord, 2021, 36(3): 570-580. DOI: 10.1002/mds.28412.
[7]
VALENTINE T R, KRATZ A L, KAPLISH N, et al. Sleep disordered breathing and neurocognitive function in multiple sclerosis: differential associations across cognitive domains[J]. Mult Scler, 2023, 29(7): 832-845. DOI: 10.1177/13524585231169465.
[8]
VANEK J, PRASKO J, GENZOR S, et al. Obstructive sleep apnea, depression and cognitive impairment[J]. Sleep Med, 2020, 72: 50-58. DOI: 10.1016/j.sleep.2020.03.017.
[9]
PURTLE M W, RENNER C H, MCCANN D A, et al. Driving with undiagnosed obstructive sleep apnea (OSA): high prevalence of OSA risk in drivers who experienced a motor vehicle crash[J]. Traffic Inj Prev, 2020, 21(1): 38-41. DOI: 10.1080/15389588.2019.1709175.
[10]
SLEEP MEDICINE PROFESSIONAL COMMITTEE. Chinese Medical Doctor Association. Multidisciplinary Diagnosis and Treatment Guidelines for Adult Obstructive Sleep Apnea[J]. Natl Med J China, 2018, 98(24): 1902-1914. DOI: 10.3760/cma.j.issn.0376-2491.2018.24.003.
[11]
ASHBURNER J, FRISTON K J. Voxel-based morphometry: the methods[J]. Neuroimage, 2000, 11(6): 805-821. DOI: 10.1006/nimg.2000.0582.
[12]
ANDRÁS S, MARCO H, BENEDIKT S, et al. Periodic limb movements in sleep are linked to decreased hippocampus and amygdala volumes in the population-based BiDirect Study[J/OL]. Sleep, 2023, 46(2): zsac263 [2024-07-26]. https://academic.oup.com/sleep/article/46/2/zsac263/6795532. DOI: 10.1093/sleep/zsac263.
[13]
GAO J, CAO J C, CHEN J Y, et al. Brain morphology and functional connectivity alterations in patients with severe obstructive sleep apnea[J]. Sleep Med, 2023, 111: 62-69. DOI: 10.1016/j.sleep.2023.08.032.
[14]
HUANG Y J, SHEN C, ZHAO W, et al. Genes associated with altered brain structure and function in obstructive sleep apnea[J/OL]. Biomedicines, 2023, 12(1): 15 [2024-07-26]. https://www.mdpi.com/2227-9059/12/1/15. DOI: 10.3390/biomedicines12010015.
[15]
YU C Y, FU Y C, LU Y, et al. Alterations of brain gray matter volume in children with obstructive sleep apnea[J/OL]. Front Neurol, 2023, 14: 1107086 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2023.1107086/full. DOI: 10.3389/fneur.2023.1107086.
[16]
SELCUK O T, AYDENIZOZ D, GENC F, et al. Are there any differences at gray matter sites between severe obstructive sleep apnea patients and healthy controls?[J]. Sleep Med, 2024, 116: 27-31. DOI: 10.1016/j.sleep.2024.02.021.
[17]
YANG J P, QI J C, MAO Y N, et al. Evaluation of grey matter density loss in patients with obstructive sleep apnea-hypopnea syndrome by VBM[J]. Journal of Brain and Nervous Diseases, 2017, 25(9): 537-542.
[18]
LI X S, HUI Y, SHI H J, et al. Altered cerebral blood flow and white matter during wakeful rest in patients with obstructive sleep apnea: a population-based retrospective study[J/OL]. Br J Radiol, 2023, 96(1143): 20220867 [2024-07-26]. https://academic.oup.com/bjr/article/96/1143/20220867/7471406. DOI: 10.1259/bjr.20220867.
[19]
KYLE J E, IRA D, ERIKA W H, et al. Cardiorespiratory fitness attenuates the deleterious effects of sleep apnea on cerebral structure and perfusion in the wisconsin sleep cohort study[J]. J Alzheimers Dis, 2023, 95(2): 427-435. DOI: 10.3233/JAD-220910.
[20]
REGINA E Y K, ROBERT D A, SORIUL K, et al. Sleep duration, sleep apnea, and gray matter volume[J]. J Geriatr Psychiatry Neurol, 2022, 35(1): 47-56. DOI: 10.1177/0891988720988918.
[21]
KEVIN A G, WASSIM T, ARIANA M S, et al. Sleep duration and brain MRI measures: Results from the SOL-INCA MRI study[J]. Alzheimers Dement, 2024, 20(1): 641-651. DOI: 10.1002/alz.13451.
[22]
MACEY P M, KUMAR R, WOO M A, et al. Brain structural changes in obstructive sleep apnea[J]. Sleep, 2008, 31(7): 967-977.
[23]
LIU X, WEI Z P, CHEN L T, et al. Effects of 3-month CPAP therapy on brain structure in obstructive sleep apnea: A diffusion tensor imaging study[J/OL]. Front Neurol, 2022, 13: 913193 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.913193/full. DOI: 10.3389/fneur.2022.913193.
[24]
MEI L, LI X D, ZHOU G F, et al. Effects of obstructive sleep apnoea severity on neurocognitive and brain white matter alterations in children according to sex: a tract-based spatial statistics study[J]. Sleep Med, 2021, 82: 134-143. DOI: 10.1016/j.sleep.2020.08.026.
[25]
DIEGO Z C, STUART J M, ERIK K S L, et al. Association of polysomnographic sleep parameters with neuroimaging biomarkers of cerebrovascular disease in older adults with sleep apnea[J/OL]. Neurology, 2023, 101(2): e125-e136 [2024-07-26]. https://www.neurology.org/doi/10.1212/WNL.0000000000207392. DOI: 10.1212/WNL.0000000000207392.
[26]
MARIA S, MARIA E C, VINCENZA C, et al. Microstructural changes in normal-appearing white matter in male sleep apnea patients are reversible after treatment: A pilot study[J]. J Neurosci Res, 2021, 99(10): 2646-2656. DOI: 10.1002/jnr.24858.
[27]
CHAI Y Q, HEA R P, HYUNJIN J, et al. White matter microstructure and connectivity changes after surgery in male adults with obstructive sleep apnea: recovery or reorganization?[J/OL]. Front Neurosci, 2023, 17: 1221290 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1221290/full. DOI: 10.3389/fnins.2023.1221290.
[28]
SHI X R, SHEN G, ZHAO Z Y, et al. Decreased structural pathways mediating functional connectivity in obstructive sleep apnea[J]. Sleep Med, 2024, 116: 96-104. DOI: 10.1016/j.sleep.2024.02.013.
[29]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[30]
BHASWATI R, ALBA N, RAVI S A, et al. Impaired glymphatic system actions in obstructive sleep apnea adults[J/OL]. Front Neurosci, 2022, 16: 884234 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.884234/full. DOI: 10.3389/fnins.2022.884234.
[31]
HO-JOON L, DONG A L, KYONG J S, et al. Glymphatic system dysfunction in obstructive sleep apnea evidenced by DTI-ALPS[J]. Sleep Med, 2022, 89: 176-181. DOI: 10.1016/j.sleep.2021.12.013.
[32]
XIONG Z L, BAI M X, WAN Z X, et al. Resting-state fMRI network efficiency as a mediator in the relationship between the glymphatic system and cognitive function in obstructive sleep apnea hypopnea syndrome: Insights from a DTI-ALPS investigation[J]. Sleep Med, 2024, 119: 250-257. DOI: 10.1016/j.sleep.2024.05.009.
[33]
LIN S W, LIN X S, CHEN S L, et al. Association of MRI indexes of the perivascular space network and cognitive impairment in patients with obstructive sleep apnea[J/OL]. Radiology, 2024, 311(3): e232274 [2024-07-26]. https://pubs.rsna.org/doi/10.1148/radiol.232274. DOI: 10.1148/radiol.232274.
[34]
BHASWATI R, RAJESH K, STEPHANIE-DEE S, et al. The role of the glymphatic system in perioperative neurocognitive disorders[J/OL]. J Neurosurg Anesthesiol, 2024 [2024-07-26]. https://journals.lww.com/jnsa/fulltext/9900/the_role_of_the_glymphatic_system_in_perioperative.111.aspx. DOI: 10.1097/ANA.0000000000000973.
[35]
STEVEN A J, ZHUO J, MELHEM E R. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain[J/OL]. AJR Am J Roentgenol, 2014, 202 (1): W26-W33 [2024-07-26]. https://www.ajronline.org/doi/10.2214/AJR.13.11365. DOI: 10.2214/AJR.13.11365.
[36]
SUDHAKAR T, JOSE P, DANIEL W K, et al. Global and regional brain non-gaussian diffusion changes in newly diagnosed patients with obstructive sleep apnea[J]. Sleep, 2016, 39(1): 51-57. DOI: 10.5665/sleep.5316.
[37]
ZIA H, MANSI G, ZAFAR N, et al. Biophysical modeling and diffusion kurtosis imaging reveal microstructural alterations in normal-appearing white-matter regions of the brain in obstructive sleep apnea[J/OL]. Sleep Adv, 2024, 5(1): zpae031 [2024-07-26]. https://academic.oup.com/sleepadvances/article/5/1/zpae031/7681657. DOI: 10.1093/sleepadvances/zpae031.
[38]
SAMEER V, PARAMJEET S, NIRANJAN K, et al. Evaluation of cerebral microstructural changes in adult patients with obstructive sleep apnea by MR diffusion kurtosis imaging using a whole-brain atlas[J]. Indian J Radiol Imaging, 2019, 29(4): 356-363. DOI: 10.4103/ijri.IJRI_326_19.
[39]
OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc NatI Acad Sci U S A, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868.
[40]
SMITHA K A, AKHIL RAJA K, ARUN K M, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
[41]
SUN Y F, LEI F, LUO L, et al. Effects of a single night of continuous positive airway pressure on spontaneous brain activity in severe obstructive sleep apnea[J/OL]. Sci Rep, 2023, 13(1): 8950 [2024-07-26]. https://www.nature.com/articles/s41598-023-36206-0. DOI: 10.1038/s41598-023-36206-0.
[42]
ZHOU L, SHAN X X, PENG Y T, et al. Reduced regional homogeneity and neurocognitive impairment in patients with moderate-to-severe obstructive sleep apnea[J]. Sleep Med, 2020, 75: 418-427. DOI: 10.1016/j.sleep.2020.09.009.
[43]
BAI J, WEN H W, TAI J, et al. Altered spontaneous brain activity related to neurologic and sleep dysfunction in children with obstructive sleep apnea syndrome[J/OL]. Front Neurosci. 2021, 15: 595412 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.595412/full. DOI: 10.3389/fnins.2021.595412.
[44]
SHU Y Q, LIU X, YU P F, et al. Inherent regional brain activity changes in male obstructive sleep apnea with mild cognitive impairment: A resting-state magnetic resonance study[J/OL]. Front Aging Neurosci, 2022, 14: 1022628 [2024-07-26]. https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.1022628/full. DOI: 10.3389/fnagi.2022.1022628.
[45]
SONG X P, BHASWATI R, SUSANA V, et al. Brain regional homogeneity changes after short-term positive airway pressure treatment in patients with obstructive sleep apnea[J]. Sleep Med, 2022, 91: 12-20. DOI: 10.1016/j.sleep.2022.02.005.
[46]
LI H J, LI L, KONG L H, et al. Frequency-specific regional homogeneity alterations and cognitive function in obstructive sleep apnea before and after short-term continuous positive airway pressure treatment[J]. Nat Sci Sleep, 2021, 13: 2221-2238. DOI: 10.2147/NSS.S344842.
[47]
KANG D J, QIN Z Y, WANG W, et al. Brain functional changes in tibetan with obstructive sleep apnea hypopnea syndrome: A resting state fMRI study[J/OL]. Medicine (Baltimore), 2020, 99(7): e18957 [2024-07-26]. https://journals.lww.com/md-journal/fulltext/2020/02140/brain_functional_changes_in_tibetan_with.17.aspx. DOI: 10.1097/MD.0000000000018957.
[48]
QIN Z Y, KANG D J, FENG X, et al. Resting-state functional magnetic resonance imaging of high altitude patients with obstructive sleep apnoea hypopnoea syndrome[J/OL]. Sci Rep, 2020, 10(1): 15546 [2024-07-26]. https://www.nature.com/articles/s41598-020-72339-2. DOI: 10.1038/s41598-020-72339-2.
[49]
LI H J, DAI X J, GONG H H, et al. Aberrant spontaneous low-frequency brain activity in male patients with severe obstructive sleep apnea revealed by resting-state functional MRI[J]. Neuropsychiatr Dis Treat, 2015, 11: 207-214. DOI: 10.2147/NDT.S73730.
[50]
ZENG Y P, SHU Y Q, LIU X, et al. Frequency-specific alterations in intrinsic low-frequency oscillations in newly diagnosed male patients with obstructive sleep apnea[J/OL]. Front Neurosci, 2022, 16: 987015 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.987015/full. DOI: 10.3389/fnins.2022.987015.
[51]
SUN Y F, SOPHINE X Y, XIE M, et al. Aberrant amplitude of low-frequency fluctuations in different frequency bands and changes after one-night positive airway pressure treatment in severe obstructive sleep apnea[J/OL]. Front Neurol, 2022, 13: 985321 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.985321/full. DOI: 10.3389/fneur.2022.985321.
[52]
GOLESTANI A M, GOODYEAR B G. Regions of interest for resting-state fMRI analysis determined by inter-voxel cross-correlation[J]. Neuroimage, 2011, 56(1): 246-251. DOI: 10.1016/j.neuroimage.2011.02.038.
[53]
HEA R P, JUNGHO C, EUN Y J, et al. Altered cerebrocerebellar functional connectivity in patients with obstructive sleep apnea and its association with cognitive function[J/OL]. Sleep, 2022, 45(1): zsab209 [2024-07-26]. https://academic.oup.com/sleep/article/45/1/zsab209/6357664. DOI: 10.1093/sleep/zsab209.
[54]
GUILLERMO M V, VÉRONIQUE D, MARIE-ÈVE M D, et al. Altered resting-state functional connectivity patterns in late middle-aged and older adults with obstructive sleep apnea[J/OL]. Front Neurol, 2023, 14: 1215882 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2023.1215882/full. DOI: 10.3389/fneur.2023.1215882.
[55]
EMILIANO S, GIULIA S, ISABELLA S, et al. Thalamic altered spontaneous activity and connectivity in obstructive sleep apnea syndrome[J]. J Neuroimaging, 2022, 32(2): 314-327. DOI: 10.1111/jon.12952.
[56]
LI L F, LIU Y T, SHU Y Q, et al. Altered functional connectivity of cerebellar subregions in male patients with obstructive sleep apnea: A resting-state fMRI study[J]. Neuroradiology, 2024, 66(6): 999-1012. DOI: 10.1007/s00234-024-03356-5.
[57]
LIU X, CHEN L T, DUAN W F, et al. Abnormal functional connectivity of hippocampal subdivisions in obstructive sleep apnea: A resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 850940 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.850940/full. DOI: 10.3389/fnins.2022.850940.
[58]
HUANG L, LI H J, SHU Y Q, et al. Changes in functional connectivity of hippocampal subregions in patients with obstructive sleep apnea after six months of continuous positive airway pressure treatment[J/OL]. Brain Sci, 2023, 13(5): 838 [2024-07-26]. https://www.mdpi.com/2076-3425/13/5/838. DOI: 10.3390/brainsci13050838.
[59]
ZENG L, SHU Y Q, XIE W, et al. Functional connectivity changes in amygdala subregions of obstructive sleep apnea patients after six months of continuous positive airway pressure treatment[J]. Nat Sci Sleep, 2024, 16: 99-109. DOI: 10.2147/NSS.S442253.
[60]
KONG L H, LI H J, SHU Y Q, et al. Aberrant resting-state functional brain connectivity of insular subregions in obstructive sleep apnea[J/OL]. Front Neurosci, 2022, 15: 765775 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.765775/full. DOI: 10.3389/fnins.2021.765775.
[61]
LONG T, LI H J, SHU Y Q, et al. Functional connectivity changes in the insular subregions of patients with obstructive sleep apnea after 6 months of continuous positive airway pressure treatment[J/OL]. Neural Plast, 2023, 2023: 5598047 [2024-07-26]. https://onlinelibrary.wiley.com/doi/10.1155/2023/5598047. DOI: 10.1155/2023/5598047.
[62]
BYUN J I, JAHNG G H, RYU C W, et al. Altered functional connectivity of the ascending reticular activating system in obstructive sleep apnea[J/OL]. Sci Rep, 2023, 13(1): 8731 [2024-07-26]. https://www.nature.com/articles/s41598-023-35535-4. DOI: 10.1038/s41598-023-35535-4.
[63]
CALHOUN V D, DE LACY N. Ten key observations on the analysis of resting-state functional MR imaging data using independent component analysis[J]. Neuroimaging Clin N Am, 2017, 27(4): 561-579. DOI: 10.1016/j.nic.2017.06.012.
[64]
ZHANG Q, WANG D W, QIN W, et al. Altered resting-state brain activity in obstructive sleep apnea[J]. Sleep, 2013, 36(5): 651-659B. DOI: 10.5665/sleep.2620.
[65]
HE Y Q, SHEN J K, WANG X, et al. Preliminary study on brain resting-state networks and cognitive impairments of patients with obstructive sleep apnea-hypopnea syndrome[J/OL]. BMC Neurol, 2022, 22(1): 456 [2024-07-26]. https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-022-02991-w. DOI: 10.1186/s12883-022-02991-w.
[66]
LI H J, LI L, LI K Y, et al. Abnormal dynamic functional network connectivity in male obstructive sleep apnea with mild cognitive impairment: A data-driven functional magnetic resonance imaging study[J/OL]. Front Aging Neurosci, 2022, 14: 977917 [2024-07-26]. https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.977917/full. DOI: 10.3389/fnagi.2022.977917.
[67]
BYUN J I, JAHNG G H, RYU C W, et al. Altered intrinsic brain functional network dynamics in moderate-to-severe obstructive sleep apnea[J]. Sleep Med, 2023, 101: 550-557. DOI: 10.1016/j.sleep.2022.12.003.
[68]
LIN W C, HSU T W, LU C H, et al. Alterations in sympathetic and parasympathetic brain networks in obstructive sleep apnea[J]. Sleep Med, 2020, 73: 135-142. DOI: 10.1016/j.sleep.2020.05.038.
[69]
MANCUSO L, COSTA T, NANI A, et al. The homotopic connectivity of the functional brain: a meta-analytic approach[J/OL]. Sci Rep, 2019, 9(1): 3346 [2024-07-26]. https://www.nature.com/articles/s41598-019-40188-3. DOI: 10.1038/s41598-019-40188-3.
[70]
SHEN G, ZHANG H Y, GAO J, et al. Analysis of resting-state voxel-mirrored homotopic connectivity in severe obstructive sleep apnea[J]. Chin J Magn Reson Imag, 2023, 14(11): 12-17, 61. DOI: 10.12015/issn.1674-8034.2023.11.003.
[71]
LIU Y T, ZHANG H X, LI H J, et al. Aberrant interhemispheric connectivity in obstructive sleep apnea-hypopnea syndrome[J/OL]. Front Neurol, 2018, 9: 314 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2018.00314/full. DOI: 10.3389/fneur.2018.00314.
[72]
MARSHALL O, JINSOO U, DANIEL L, et al. The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI[J]. Hum Brain Mapp, 2015, 36(10): 3912-3921. DOI: 10.1002/hbm.22886.
[73]
JI L R, WANG E L, CHEN R, et al. Abnormal changes of brain function in patients with OSAHS: VMHC-based re-fMRI study[J]. Chin J Magn Reson Imag, 2023, 14(9): 13-18. DOI: 10.12015/issn.1674-8034.2023.09.003.
[74]
FARAHANI F V, KARWOWSKI W, LIGHTHALL N R. Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review[J/OL]. Front Neurosci, 2019, 13: 585 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.00585/full. DOI: 10.3389/fnins.2019.00585.
[75]
WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442. DOI: 10.1038/30918.
[76]
CHEN L T, FAN X L, LI H J, et al. Disrupted small-world brain functional network topology in male patients with severe obstructive sleep apnea revealed by resting-state fMRI[J]. Neuropsychiatr Dis Treat, 2017, 13: 1471-1482. DOI: 10.2147/NDT.S135426.
[77]
CHEN L T, FAN X L, LI H J, et al. Aberrant brain functional connectome in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2018, 14: 1059-1070. DOI: 10.2147/NDT.S161085.
[78]
BUMHEE P, JOSE A P, MARY A W, et al. Disrupted functional brain network organization in patients with obstructive sleep apnea[J/OL]. Brain Behav, 2016, 6(3): e00441 [2024-07-26]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.441. DOI: 10.1002/brb3.441.
[79]
JI T T, REN X M, LONG T, et al. Aberrant topological properties of brain functional network in children with obstructive sleep apnea derived from resting-state fMRI[J]. Brain Topogr, 2023, 36(1): 72-86. DOI: 10.1007/s10548-022-00920-1.
[80]
CHEN F F, FU Y C, TANG B Q, et al. Altered cerebral white matter network topology and cognition in children with obstructive sleep apnea[J]. Sleep Med, 2024, 118: 63-70. DOI: 10.1016/j.sleep.2024.03.038.
[81]
ZUO X N, EHMKE R, MENNES M, et al. Network centrality in the human functional connectome[J]. Cereb Cortex, 2012, 22(8): 1862-1875. DOI: 10.1093/cercor/bhr269.
[82]
LI H J, LI L, SHAO Y, et al. Abnormal intrinsic functional hubs in severe male obstructive sleep apnea: Evidence from a voxel-wise degree centrality analysis[J/OL]. PLoS One, 2016, 11(10): e0164031 [2024-07-26]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164031. DOI: 10.1371/journal.pone.0164031.
[83]
LI P M, SHU Y Q, LIU X, et al. The effects of CPAP treatment on resting-state network centrality in obstructive sleep apnea patients[J/OL]. Front Neurol, 2022, 13: 801121 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.801121/full. DOI: 10.3389/fneur.2022.801121.
[84]
LIU X, SHU Y Q, YU P F, et al. Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: A machine learning analysis[J/OL]. Front Neurol, 2022, 13: 1005650 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.1005650/full. DOI: 10.3389/fneur.2022.1005650.
[85]
VAN LAAR P J, VAN DER GROND J, HENDRIKSE J. Brain perfusion territory imaging: methods and clinical applications of selective arterial spin-labeling MR imaging[J]. Radiology, 2008, 246(2): 354-364. DOI: 10.1148/radiol.2462061775.
[86]
XIAO P, HUA K, CHEN F, et al. Abnormal cerebral blood flow and volumetric brain morphometry in patients with obstructive sleep apnea[J/OL]. Front Neurosci, 2022, 16:934166[2024-10-29]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.934166/full. DOI: 10.3389/fnins.2022.934166.
[87]
BURGESS A, ANDREWS G, COLBY K M E, et al. Loop gain response to increased cerebral blood flow at high altitude[J]. Sleep Breath, 2024, 28(2): 763-771. DOI: 10.1007/s11325-023-02956-4.
[88]
WASHIO T, HISSEN S L, TAKEDA R, et al. Effects of posture changes on dynamic cerebral autoregulation during early pregnancy in women with obesity and/or sleep apnea[J]. Clin Auton Res, 2023, 33(2): 121-131. DOI: 10.1007/s10286-023-00939-9.
[89]
BALTZER P A, DIETZEL M, KAISER W A. MR-spectroscopy at 1.5 tesla and 3 tesla. Useful? A systematic review and meta-analysis[J/OL]. Eur J Radiol, 2012, 81(Suppl 1): S6-S9 [2024-07-26]. https://www.sciencedirect.com/science/article/abs/pii/S0720048X12700037. DOI: 10.1016/S0720-048X(12)70003-7.
[90]
JENKINS D D, WIEST D B, MULVIHILL D M, et al. Fetal and neonatal effects of N-Acetylcysteine when used for neuroprotection in maternal chorioamnionitis[J/OL]. J Pediatr, 2015, 168: 67-76.e6 [2024-07-26]. https://www.jpeds.com/article/S0022-3476(15)01150-6/fulltext. DOI: 10.1016/j.jpeds.2015.09.076.
[91]
LI Y, ZHAO L, ZHANG K, et al. Neurometabolic and structural alterations of medial septum and hippocampal CA1 in a model of post-operative sleep fragmentation in aged mice: a study combining 1H-MRS and DTI[J/OL]. Front Cell Neurosci, 2023, 17: 1160761 [2024-07-26]. https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2023.1160761/full. DOI: 10.3389/fncel.2023.1160761.
[92]
KANG J, TIAN Z, LI M. Changes in insular cortex metabolites in patients with obstructive sleep apnea syndrome[J]. Neuroreport, 2018, 29(12): 981-986. DOI: 10.1097/WNR.0000000000001065.
[93]
MACEY P M, SARMA M K, PRASAD J P, et al. Obstructive sleep apnea is associated with altered midbrain chemical concentrations[J]. Neuroscience, 2017, 363: 76-86. DOI: 10.1016/j.neuroscience.2017.09.001.
[94]
WANG T T, FENG Q X, ZHONG X F, et al. Preliminary research of 1H-MRS on the changes of cerebral metabolism in children OSAHS patients[J]. J Clin Radiol, 2019, 38(11): 2161-2165. DOI: 10.13437/j.cnki.jcr.2019.11.036.
[95]
VAKULIN A, GREEN M A, D'ROZARIO A L, et al. Brain mitochondrial dysfunction and driving simulator performance in untreated obstructive sleep apnea[J/OL]. J Sleep Res, 2021, 31(2): e13482 [2024-07-26]. https://onlinelibrary.wiley.com/doi/10.1111/jsr.13482. DOI: 10.1111/jsr.13482.

PREV Magnetic resonance imaging research progress of effective brain network connectivity in patients with major depressive disorder
NEXT MRI progress of benign childhood epilepsy with centrotemporal spikes
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn