Share:
Share this content in WeChat
X
Review
MRI progress of benign childhood epilepsy with centrotemporal spikes
CHEN Yiwen  ZHANG Zhiqiang 

Cite this article as: CHEN Y W, ZHANG Z Q. MRI progress of benign childhood epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2024, 15(11): 169-173. DOI:10.12015/issn.1674-8034.2024.11.026.


[Abstract] Benign childhood epilepsy with centrotemporal spikes (BECTS) is one of the most common focal epilepsy in childhood. MRI is of great significance to disease research, which can analyze the structure and functional characteristics of brains. It contains three dimensions T1-weighted imaging, functional MRI, diffusion-tensor imaging, simultaneous electroencephalogram and functional MRI, multimodal MRI and so on. This study aims to review the radiological technology used to analyze the brain development and cognitive levels of patients, guide lesion localization in BECTS, identify effects of antiepileptic drugs and estimate the prognosis of patients. It provides a reference for exploring the pathogenesis of BECTS and guiding clinical management in the future.
[Keywords] benign childhood epilepsy with centrotemporal spikes;rolandic epilepsy;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging

CHEN Yiwen   ZHANG Zhiqiang*  

Jinling Clinical Medical College, Nanjing Medical University, Nanjing210002, China

Corresponding author: ZHANG Z Q, E-mail: zhangzq2001@126.com

Conflicts of interest   None.

Received  2024-07-15
Accepted  2024-11-08
DOI: 10.12015/issn.1674-8034.2024.11.026
Cite this article as: CHEN Y W, ZHANG Z Q. MRI progress of benign childhood epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2024, 15(11): 169-173. DOI:10.12015/issn.1674-8034.2024.11.026.

[1]
VETRI L, PEPI A, ALESI M, et al. Poor school academic performance and benign epilepsy with centro-temporal spikes[J/OL]. Behav Sci (Basel), 2023, 13(2): 106 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9952252/. DOI: 10.3390/bs13020106.
[2]
PANAYIOTOPOULOS C P, MICHAEL M, SANDERS S, et al. Benign childhood focal epilepsies: assessment of established and newly recognized syndromes[J]. Brain, 2008, 131(Pt 9): 2264-2286. DOI: 10.1093/brain/awn162.
[3]
RINEY K, BOGACZ A, SOMERVILLE E, et al. International league against epilepsy classification and definition of epilepsy syndromes with onset at a variable age: position statement by the ILAE task force on nosology and definitions[J]. Epilepsia, 2022, 63(6): 1443-1474. DOI: 10.1111/epi.17240.
[4]
HALASZ P, SZUCS A. Self-limited childhood epilepsies are disorders of the perisylvian communication system, carrying the risk of progress to epileptic encephalopathies-Critical review[J/OL]. Front Neurol, 2023, 14: 1092244 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10301767/. DOI: 10.3389/fneur.2023.1092244.
[5]
BHASIN H, SHARMA S. The new international league against epilepsy (ILAE) 2017 classification of seizures and epilepsy: What pediatricians need to know![J]. Indian J Pediatr, 2019, 86(7): 569-571. DOI: 10.1007/s12098-019-02910-x.
[6]
ASHOUR M, MINATO E, ALAWADHI A, et al. Diagnostic utility of specific abnormal EEG patterns in children for determining epilepsy phenotype and presence of structural brain abnormalities[J/OL]. Heliyon, 2022, 8(8): e10172 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9399955/. DOI: 10.1016/j.heliyon.2022.e10172.
[7]
ZANABONI M P, VARESIO C, PASCA L, et al. Systematic review of executive functions in children with self-limited epilepsy with centrotemporal spikes[J/OL]. Epilepsy Behav, 2021, 123: 108254 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/34428616/. DOI: 10.1016/j.yebeh.2021.108254.
[8]
LI Y, LI Y, SUN J, et al. Relationship between brain activity, cognitive function, and sleep spiking activation in new-onset self-limited epilepsy with centrotemporal spikes[J/OL]. Front Neurol, 2022, 13: 956838 [2024-07-15]. http://pmc.ncbi.nlm.nih.gov/articles/PMC9682286. DOI: 10.3389/fneur.2022.956838.
[9]
CHEN S C, DUAN L F, SUN Y, et al. Correlation between cognitive function and electroclinical characteristics of benign childhood epilepsy with centrotemporal spikes[J]. J Clin Pediatr, 2024, 42(3): 211-217. DOI: 10.12372/jcp.2024.22e1748.
[10]
ZHANG Q, HE Y, QU T, et al. Delayed brain development of Rolandic epilepsy profiled by deep learning-based neuroanatomic imaging[J]. Eur Radiol, 2021, 31(12): 9628-9637. DOI: 10.1007/s00330-021-08048-9.
[11]
SAMANTA D. GRIN2A-related epilepsy and speech disorders: A comprehensive overview with a focus on the role of precision therapeutics[J/OL]. Epilepsy Res, 2023, 189: 107065 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/36516565/. DOI: 10.1016/j.eplepsyres.2022.107065.
[12]
DUAN Y, LENG X, LIU C, et al. The correlation of ELP4-PAX6 with rolandic spike sources in idiopathic rolandic epilepsy syndromes[J/OL]. Front Neurol, 2021, 12: 643964 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8064626/. DOI: 10.3389/fneur.2021.643964.
[13]
YAN H J, HE Y Y, JIN L, et al. Expanding the phenotypic spectrum of KCNK4: From syndromic neurodevelopmental disorder to rolandic epilepsy[J/OL]. Front Mol Neurosci, 2022, 15: 1081097 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9851069/. DOI: 10.3389/fnmol.2022.1081097.
[14]
MEGUID N A, HASHEM H S, GHANEM M H, et al. Evaluation of branched-chain amino acids in children with autism spectrum disorder and epilepsy[J]. Mol Neurobiol, 2023, 60(4): 1997-2004. DOI: 10.1007/s12035-022-03202-w.
[15]
PENG J, ZHOU Y, WANG K. Multiplex gene and phenotype network to characterize shared genetic pathways of epilepsy and autism[J/OL]. Sci Rep, 2021, 11(1): 952 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7806931/. DOI: 10.1038/s41598-020-78654-y.
[16]
HE W, LIU H, LIU Z, et al. Electrical status epilepticus in sleep affects intrinsically connected networks in patients with benign childhood epilepsy with centrotemporal spikes[J/OL]. Epilepsy Behav, 2020, 106: 107032 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/32220803/. DOI: 10.1016/j.yebeh.2020.107032.
[17]
KWON H, CHINAPPEN D M, HUANG J F, et al. Transient, developmental functional and structural connectivity abnormalities in the thalamocortical motor network in Rolandic epilepsy[J/OL]. Neuroimage Clin, 2022, 35: 103102 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9251597/. DOI: 10.1016/j.nicl.2022.103102.
[18]
SPENCER E R, CHINAPPEN D, EMERTON B C, et al. Source EEG reveals that Rolandic epilepsy is a regional epileptic encephalopathy[J/OL]. Neuroimage Clin, 2022, 33: 102956 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8844714/. DOI: 10.1016/j.nicl.2022.102956.
[19]
SMITH S D W, MCGINNITY C J, SMITH A B, et al. A prospective 5-year longitudinal study detects neurocognitive and imaging correlates of seizure remission in self-limiting Rolandic epilepsy[J/OL]. Epilepsy Behav, 2023, 147: 109397 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/37619460/. DOI: 10.1016/j.yebeh.2023.109397.
[20]
LIU H, CHEN D, LIU C, et al. Brain structural changes and molecular analyses in children with benign epilepsy with centrotemporal spikes[J]. Pediatr Res, 2024, 96(1): 184-189. DOI: 10.1038/s41390-024-03118-2.
[21]
KOTIKALAPUDI R, DRICU M, MOSER D A, et al. Brain structure and optimism bias: A voxel-based morphometry approach[J/OL]. Brain Sci, 2022, 12(3): 315 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8946158/. DOI: 10.3390/brainsci12030315.
[22]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of using both voxel- and surface-based morphometry in cortical morphology analysis: A review of various applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[23]
TANG X, GUO Z, CHEN G, et al. A multimodal meta-analytical evidence of functional and structural brain abnormalities across Alzheimer's disease spectrum[J/OL]. Ageing Res Rev, 2024, 95: 102240 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/38395200/. DOI: 10.1016/j.arr.2024.102240.
[24]
DU Y, YANG W, ZHANG J, et al. Changes in ALFF and ReHo values in methamphetamine abstinent individuals based on the Harvard-Oxford atlas: A longitudinal resting-state fMRI study[J/OL]. Addict Biol, 2022, 27(1): e13080 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9286454/. DOI: 10.1111/adb.13080.
[25]
STEEL A, GARCIA B D, SILSON E H, et al. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI[J/OL]. Neuroimage, 2022, 264: 119723 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/36328274/. DOI: 10.1016/j.neuroimage.2022.119723.
[26]
GAL S, COLDHAM Y, TIK N, et al. Act natural: Functional connectivity from naturalistic stimuli fMRI outperforms resting-state in predicting brain activity[J/OL]. Neuroimage, 2022, 258: 119359 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/35680054/. DOI: 10.1016/j.neuroimage.2022.119359.
[27]
SEMMEL E S, QUADRI T R, KING T Z. Graph theoretical analysis of brain network characteristics in brain tumor patients: A systematic review[J]. Neuropsychol Rev, 2022, 32(3): 651-675. DOI: 10.1007/s11065-021-09512-5.
[28]
RIEDEL L, VAN DEN HEUVEL M P, MARKETT S. Trajectory of rich club properties in structural brain networks[J]. Hum Brain Mapp, 2022, 43(14): 4239-4253. DOI: 10.1002/hbm.25950.
[29]
DUBOIS J, ALISON M, COUNSELL S J, et al. MRI of the neonatal brain: A review of methodological challenges and neuroscientific advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. DOI: 10.1002/jmri.27192.
[30]
SMITH S D W, SMITH A B, RICHARDSON M P, et al. Neurodevelopmental origins of self-limiting rolandic epilepsy: Systematic review of MR imaging studies[J]. Epilepsia Open, 2021, 6(2): 310-322. DOI: 10.1002/epi4.12468.
[31]
GARCIA-RAMOS C, JACKSON D C, LIN J J, et al. Cognition and brain development in children with benign epilepsy with centrotemporal spikes[J]. Epilepsia, 2015, 56(10): 1615-1622. DOI: 10.1111/epi.13125.
[32]
LUO C, ZHANG Y, CAO W, et al. Altered structural and functional feature of striato-cortical circuit in benign epilepsy with centrotemporal spikes[J/OL]. Int J Neural Syst, 2015, 25(6): 1550027 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/26126612/. DOI: 10.1142/S0129065715500276.
[33]
XU Y, XU Q, ZHANG Q, et al. Influence of epileptogenic region on brain structural changes in Rolandic epilepsy[J]. Brain Imaging Behav, 2022, 16(1): 424-434. DOI: 10.1007/s11682-021-00517-5.
[34]
LI Z, ZHANG J, WANG F, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes[J/OL]. Ann Transl Med, 2020, 8(18): 1150 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7576069/. DOI: 10.21037/atm-20-5845.
[35]
CIUMAS C, MONTAVONT A, ILSKI F, et al. Neural correlates of verbal working memory in children with epilepsy with centro-temporal spikes[J/OL]. Neuroimage Clin, 2020, 28: 102392 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7495114/. DOI: 10.1016/j.nicl.2020.102392.
[36]
JIANG L, MA X, LIU H, et al. Aberrant dynamics of regional coherence measured by resting-state fMRI in children with benign epilepsy with centrotemporal spikes (BECTS)[J/OL]. Front Neurol, 2021, 12: 712071 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8715032/. DOI: 10.3389/fneur.2021.712071.
[37]
YANG F, TAN J, HUANG Y, et al. Altered language-related effective connectivity in patients with benign childhood epilepsy with centrotemporal spikes[J/OL]. Life (Basel), 2023, 13(2): 590 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9960797/. DOI: 10.3390/life13020590.
[38]
FATEH A A, SMAHI A, HASSAN M, et al. From brain connectivity to cognitive function: Dissecting the salience network in pediatric BECTS-ESES[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 135: 111110 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/39069247/. DOI: 10.1016/j.pnpbp.2024.111110.
[39]
WU Y, FANG F, LI K, et al. Functional connectivity differences in speech production networks in Chinese children with Rolandic epilepsy[J/OL]. Epilepsy Behav, 2022, 135: 108819 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/35973912/. DOI: 10.1016/j.yebeh.2022.108819.
[40]
XU G, ZHANG Y, CHEN X. Combined diffusion tensor imaging and quantitative susceptibility mapping to characterize normal-appearing white matter in self-limited epilepsy with centrotemporal spikes[J]. Neuroradiology, 2024, 66(8): 1383-1390. DOI: 10.1007/s00234-024-03367-2.
[41]
CIUMAS C, SAIGNAVONGS M, ILSKI F, et al. White matter development in children with benign childhood epilepsy with centro-temporal spikes[J]. Brain, 2014, 137(Pt 4): 1095-1106. DOI: 10.1093/brain/awu039.
[42]
OSTROWSKI L M, CHINAPPEN D M, STOYELL S M, et al. Children with Rolandic epilepsy have micro- and macrostructural abnormalities in white matter constituting networks necessary for language function[J/OL]. Epilepsy Behav, 2023, 144: 109254 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10330597/. DOI: 10.1016/j.yebeh.2023.109254.
[43]
GALLO-BERNAL S, BEDOYA M A, GEE M S, et al. Pediatric magnetic resonance imaging: faster is better[J]. Pediatr Radiol, 2023, 53(7): 1270-1284. DOI: 10.1007/s00247-022-05529-x.
[44]
XU Q, HU Z, YANG F, et al. Resting state signal latency assesses the propagation of intrinsic activations and estimates anti-epileptic effect of levetiracetam in Rolandic epilepsy[J]. Brain Res Bull, 2020, 162: 125-131. DOI: 10.1016/j.brainresbull.2020.05.016.
[45]
TALAMI F, LEMIEUX L, AVANZINI P, et al. The influence of wakefulness fluctuations on brain networks involved in centrotemporal spike occurrence[J]. Clin Neurophysiol, 2024, 164: 47-56. DOI: 10.1016/j.clinph.2024.05.005.
[46]
TIMMERMANN C, ROSEMAN L, HARIDAS S, et al. Human brain effects of DMT assessed via EEG-fMRI[J/OL]. Proc Natl Acad Sci U S A, 2023, 120(13): e2218949120 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10068756/. DOI: 10.1073/pnas.2218949120.
[47]
FLEURY M, FIGUEIREDO P, VOURVOPOULOS A, et al. Two is better? combining EEG and fMRI for BCI and neurofeedback: a systematic review[J/OL]. J Neural Eng, 2023, 20(5) [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/37879343/. DOI: 10.1088/1741-2552/ad06e1.
[48]
ITO Y, MAKI Y, OKAI Y, et al. Involvement of brain structures in childhood epilepsy with centrotemporal spikes[J/OL]. Pediatr Int, 2022, 64(1): e15001 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/34562291/. DOI: 10.1111/ped.15001.
[49]
DAI X J, YANG Y, WANG Y. Interictal epileptiform discharges changed epilepsy-related brain network architecture in BECTS[J]. Brain Imaging Behav, 2022, 16(2): 909-920. DOI: 10.1007/s11682-021-00566-w.
[50]
MERTENS A, BOON P, VONCK K. Neurostimulation for childhood epilepsy[J]. Dev Med Child Neurol, 2024, 66(4): 440-444. DOI: 10.1111/dmcn.15692.
[51]
ZEWDIE E, CIECHANSKI P, KUO H C, et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations[J]. Brain Stimul, 2020, 13(3): 565-575. DOI: 10.1016/j.brs.2019.12.025.
[52]
STEPHEN J, WEIR C J, CHIN R F. Temporal trends in incidence of Rolandic epilepsy, prevalence of comorbidities and prescribing trends: birth cohort study[J]. Arch Dis Child, 2020, 105(6): 569-574. DOI: 10.1136/archdischild-2019-318212.
[53]
JIANG Y, SONG L, LI X, et al. Dysfunctional white-matter networks in medicated and unmedicated benign epilepsy with centrotemporal spikes[J]. Hum Brain Mapp, 2019, 40(10): 3113-3124. DOI: 10.1002/hbm.24584.
[54]
LI Z P, YANG F, HU Z, et al. Effect of levetiracetam in benign childhood epilepsy with centro-temporal spikes: a resting-state fMRI study based on amplitude of low frequence fluctuation[J]. J Chin Clin Med Imaging, 2017, 28(10): 707-711. DOI: 10.3969/j.issn.1008-1062.2017.10.005.
[55]
ZHANG Q, YANG F, HU Z, et al. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes[J]. Eur Radiol, 2017, 27(5): 2137-2145. DOI: 10.1007/s00330-016-4531-z.
[56]
CHENG W, YANG Y, CHEN Y, et al. Anti-seizure medication treatment of benign childhood epilepsy with centrotemporal spikes: A systematic review and meta-analysis[J/OL]. Front Pharmacol, 2022, 13: 821639 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8960983/. DOI: 10.3389/fphar.2022.821639.
[57]
WU Q, LI Z, SHEN Y F. Dosage recommendation of levetiracetam for the treatment of BECT in children based on deep Q network[J]. Chin J Mod Appl Pharm, 2022, 39(12): 1585-1590. DOI: 10.13748/j.cnki.issn1007-7693.2022.12.012.
[58]
LI Y, FENG J, ZHANG T, et al. Brain metabolic characteristics distinguishing typical and atypical benign epilepsy with centro-temporal spikes[J]. Eur Radiol, 2021, 31(12): 9335-9345. DOI: 10.1007/s00330-021-08051-0.
[59]
UCAR H K, ARHAN E, AYDIN K, et al. Electrical status epilepticus during sleep (ESES) in benign childhood epilepsy with Centrotemporal spikes (BCECTS): insights into predictive factors, and clinical and EEG outcomes[J]. Eur Rev Med Pharmacol Sci, 2022, 26(6): 1885-1896. DOI: 10.26355/eurrev_202203_28334.
[60]
PARK Y K, EUN S H, EUN B L, et al. Factors predicting poor response to initial therapy in benign childhood epilepsy with centrotemporal spikes (BCECTS)[J]. J Epilepsy Res, 2015, 5(2): 70-74. DOI: 10.14581/jer.15012.
[61]
JURKEVICIENE G, ENDZINIENE M, LAUKIENE I, et al. Association of language dysfunction and age of onset of benign epilepsy with centrotemporal spikes in children[J]. Eur J Paediatr Neurol, 2012, 16(6): 653-661. DOI: 10.1016/j.ejpn.2012.03.011.
[62]
VAN KLINK N E, VAN 'T KLOOSTER M A, LEIJTEN F S, et al. Ripples on rolandic spikes: A marker of epilepsy severity[J]. Epilepsia, 2016, 57(7): 1179-1189. DOI: 10.1111/epi.13423.
[63]
KRAMER M A, OSTROWSKI L M, SONG D Y, et al. Scalp recorded spike ripples predict seizure risk in childhood epilepsy better than spikes[J]. Brain, 2019, 142(5): 1296-1309. DOI: 10.1093/brain/awz059.
[64]
OPERTO F F, MAZZA R, PASTORINO G M G, et al. Parental stress in a sample of children with epilepsy[J]. Acta Neurol Scand, 2019, 140(2): 87-92. DOI: 10.1111/ane.13106.

PREV The progress of brain structural and functional magnetic resonance imaging in patients with obstructive sleep apnea
NEXT Progress of functional magnetic resonance imaging technology in explaining the mechanism of acupuncture acupuncture treatment of ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn