Share:
Share this content in WeChat
X
Review
Advances in structural and functional imaging in asymptomatic carotid artery stenosis
WANG Junjun  SONG Linfeng  TIAN Binlin  JIANG Lin 

Cite this article as: WANG J J, SONG L F, TIAN B L, et al. Advances in structural and functional imaging in asymptomatic carotid artery stenosis[J]. Chin J Magn Reson Imaging, 2024, 15(11): 185-189, 215. DOI:10.12015/issn.1674-8034.2024.11.029.


[Abstract] Asymptomatic carotid stenosis (ACS) refers to a condition where there have been no neurological symptoms caused by moderate extracranial internal carotid artery stenosis (stenosis rate ≥ 50%) within the past 3 to 6 months or ever before. ACS is one of the causes of vascular cognitive impairment and may progress to vascular dementia. However, ACS lacks specific imaging features on MRI, which does not correspond to its multifield cognitive impairment, drawing attention from researchers worldwide. A review of recent literature reveals that previous studies have mainly focused on structural or resting-state functional research, lacking a comprehensive analysis of structural and functional coupling in ACS-related brain structure and function abnormalities. Therefore, this article reviews research progress on ACS from the perspective of structural and functional MRI, aiming to provide new insights into the mechanisms underlying cognitive impairment in ACS.
[Keywords] asymptomatic carotid stenosis;impaired cognitive function;magnetic resonance imaging;brain structure;brain function;brain network

WANG Junjun   SONG Linfeng   TIAN Binlin   JIANG Lin*  

Department of Medical Imaging, the Third Affiliated Hospital of Zunyi Medical University (the First People's Hospital of Zunyi), Zunyi563000, China

Corresponding author: JIANG L, E-mail: jlinzmc@163.com

Conflicts of interest   None.

Received  2024-07-21
Accepted  2024-11-10
DOI: 10.12015/issn.1674-8034.2024.11.029
Cite this article as: WANG J J, SONG L F, TIAN B L, et al. Advances in structural and functional imaging in asymptomatic carotid artery stenosis[J]. Chin J Magn Reson Imaging, 2024, 15(11): 185-189, 215. DOI:10.12015/issn.1674-8034.2024.11.029.

[1]
LAZAR R M, WADLEY V G, MYERS T, et al. Baseline cognitive impairment in patients with asymptomatic carotid stenosis in the CREST-2 trial[J]. Stroke, 2021, 52(12): 3855-3863. DOI: 10.1161/STROKEAHA.120.032972.
[2]
SONG P G, FANG Z, WANG H Y, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study[J/OL]. Lancet Glob Health, 2020, 8(5): e721-e729 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32353319/. DOI: 10.1016/S2214-109X(20)30117-0.
[3]
POORTHUIS M H F, SHERLIKER P, MORRIS D R, et al. Development and internal validation of a risk score to detect asymptomatic carotid stenosis[J]. Eur J Vasc Endovasc Surg, 2021, 61(3): 365-373. DOI: 10.1016/j.ejvs.2020.11.029.
[4]
COUTTS S B, WEIN T H, LINDSAY M P, et al. Canadian Stroke Best Practice Recommendations: secondary prevention of stroke guidelines, update 2014[J]. Int J Stroke, 2015, 10(3): 282-291. DOI: 10.1111/ijs.12439.
[5]
INZITARI D, ELIASZIW M, GATES P, et al. The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators[J]. N Engl J Med, 2000, 342(23): 1693-1700. DOI: 10.1056/NEJM200006083422302.
[6]
HU Z Z, ZHANG K, QIANG W, et al. Study of cognitive function in patients with severe asymptomatic carotid artery stenosis by a computerized neuropsychological assessment device[J/OL]. Front Psychol, 2023, 14: 1055244 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/36968715/. DOI: 10.3389/fpsyg.2023.1055244.
[7]
GAO L, RUAN Z, XIAO Y Q, et al. Surface-based cortical morphometry, white matter hyperintensity, and multidomain cognitive performance in asymptomatic carotid stenosis[J/OL]. Neuroscience, 2021, 467: 16-27 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34022325/. DOI: 10.1016/j.neuroscience.2021.05.013.
[8]
PORCU M, COCCO L, SALONER D, et al. Extracranial carotid artery stenosis: the effects on brain and cognition with a focus on resting-state functional connectivity[J]. J Neuroimaging, 2020, 30(6): 736-745. DOI: 10.1111/jon.12777.
[9]
GHAZNAWI R, VONK J M, ZWARTBOL M H, et al. Low-grade carotid artery stenosis is associated with progression of brain atrophy and cognitive decline. The SMART-MR study[J]. J Cereb Blood Flow Metab, 2023, 43(2): 309-318. DOI: 10.1177/0271678X221133859.
[10]
GHAZNAWI R, RISSANEN I, DE BRESSER J, et al. Carotid artery stenosis and progression of hemispheric brain atrophy: the SMART-MR study[J]. Cerebrovasc Dis, 2023, 52(2): 226-233. DOI: 10.1159/000526261.
[11]
DUAN W, LU L, CUI C, et al. Examination of brain area volumes based on voxel-based morphometry and multidomain cognitive impairment in asymptomatic unilateral carotid artery stenosis[J/OL]. Front Aging Neurosci, 2023, 15: 1128380 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/37009454/. DOI: 10.3389/fnagi.2023.1128380.
[12]
CHENG H L, LIN C J, SOONG B W, et al. Impairments in cognitive function and brain connectivity in severe asymptomatic carotid stenosis[J]. Stroke, 2012, 43(10): 2567-2573. DOI: 10.1161/STROKEAHA.111.645614.
[13]
REN J X, XU D, MEI H, et al. Asymptomatic carotid stenosis is associated with both edge and network reconfigurations identified by single-subject cortical thickness networks[J/OL]. Front Aging Neurosci, 2022, 14: 1091829 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/36711201/. DOI: 10.3389/fnagi.2022.1091829.
[14]
PARASKEVAS K I, FAGGIOLI G, ANCETTI S, et al. Editor's choice -asymptomatic carotid stenosis and cognitive impairment: a systematic review[J]. Eur J Vasc Endovasc Surg, 2021, 61(6): 888-899. DOI: 10.1016/j.ejvs.2021.03.024.
[15]
GAO L, XIAO Y Q, XU H B. Gray matter asymmetry in asymptomatic carotid stenosis[J]. Hum Brain Mapp, 2021, 42(17): 5665-5676. DOI: 10.1002/hbm.25645.
[16]
WANG P J, CAI H, LUO R T, et al. Measurement of cortical atrophy and its correlation to memory impairment in patients with asymptomatic carotid artery stenosis based on VBM-DARTEL[J/OL]. Front Aging Neurosci, 2021, 13: 620763 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34295237/. DOI: 10.3389/fnagi.2021.620763.
[17]
HU H Y, OU Y N, SHEN X N, et al. White matter hyperintensities and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 36 prospective studies[J/OL]. Neurosci Biobehav Rev, 2021, 120: 16-27 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/33188821/. DOI: 10.1016/j.neubiorev.2020.11.007.
[18]
XU S H, YU S S, MAO B J, et al. Cholinergic hyperintensity pathways are associated with cognitive performance in patients with asymptomatic carotid artery stenosis[J/OL]. Clin Neurol Neurosurg, 2024, 241: 108278 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/38631155/. DOI: 10.1016/j.clineuro.2024.108278.
[19]
ZHANG C, HE C, SUN J T, et al. Association and mechanism of asymptomatic carotid stenosis with cognitive impairment as suggested by multimodal MRI[J]. Chin J Magn Reson Imag, 2023, 14(8): 140-144, 170. DOI: 10.12015/issn.1674-8034.2023.08.024.
[20]
BARADARAN H, SARRAMI A H, GUPTA A. Asymptomatic carotid disease and cognitive impairment: what is the evidence?[J/OL]. Front Neurol, 2021, 12: 741500 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34867724/. DOI: 10.3389/fneur.2021.741500.
[21]
PORCU M, COCCO L, CAU R, et al. The restoring of interhemispheric brain connectivity following carotid endarterectomy: an exploratory observational study[J]. Brain Imaging Behav, 2022, 16(5): 2037-2048. DOI: 10.1007/s11682-022-00674-1.
[22]
CHEN J R, LIN C J, CHANG F C, et al. Territory-related functional connectivity changes associated with verbal memory decline in patients with unilateral asymptomatic internal carotid stenosis[J]. AJNR Am J Neuroradiol, 2024, 45(7): 934-942. DOI: 10.3174/ajnr.A8248.
[23]
KOHTA M, OSHIRO Y, YAMAGUCHI Y, et al. Effects of carotid revascularization on cognitive function and brain functional connectivity in carotid stenosis patients with cognitive impairment: a pilot study[J]. J Neurosurg, 2023, 139(4): 1010-1017. DOI: 10.3171/2023.1.JNS222804.
[24]
MAIMAITIAILI S, TANG C, LIU C, et al. Alterations in brain morphology and functional connectivity mediate cognitive decline in carotid atherosclerotic stenosis[J/OL]. Front Aging Neurosci, 2024, 16: 1395911 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/38974904/. DOI: 10.3389/fnagi.2024.1395911.
[25]
CHANG T Y, HUANG K L, HO M Y, et al. Graph theoretical analysis of functional networks and its relationship to cognitive decline in patients with carotid stenosis[J]. J Cereb Blood Flow Metab, 2016, 36(4): 808-818. DOI: 10.1177/0271678X15608390.
[26]
SPINELLI E G, GHIRELLI A, BASAIA S, et al. Structural MRI signatures in genetic presentations of the frontotemporal dementia/motor neuron disease spectrum[J/OL]. Neurology, 2021, 97(16): e1594-e1607 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34544819/. DOI: 10.1212/WNL.0000000000012702.
[27]
LOMBARDI G, CRESCIOLI G, CAVEDO E, et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment[J/OL]. Cochrane Database Syst Rev, 2020, 3(3): CD009628 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32119112/. DOI: 10.1002/14651858.CD009628.pub2.
[28]
MAYER A R, MEIER T B, DODD A B, et al. Prospective study of gray matter atrophy following pediatric mild traumatic brain injury[J/OL]. Neurology, 2023, 100(5): e516-e527 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/36522161/. DOI: 10.1212/WNL.0000000000201470.
[29]
YOON E J, LEE J Y, KWAK S, et al. Mild behavioral impairment linked to progression to Alzheimer's disease and cortical thinning in amnestic mild cognitive impairment[J/OL]. Front Aging Neurosci, 2022, 14: 1051621 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/36688162/. DOI: 10.3389/fnagi.2022.1051621.
[30]
ONG J L, JAMALUDDIN S A, TANDI J, et al. Cortical thinning and sleep slow wave activity reductions mediate age-related improvements in cognition during mid-late adolescence[J/OL]. Sleep, 2022, 45(1): zsab206 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34379782/. DOI: 10.1093/sleep/zsab206.
[31]
SOBCZYK O, SAM K, MANDELL D M, et al. Cerebrovascular reactivity assays collateral function in carotid stenosis[J/OL]. Front Physiol, 2020, 11: 1031 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/33041841/. DOI: 10.3389/fphys.2020.01031.
[32]
LIU X T, XU D, ZHONG X L, et al. Altered callosal morphology and connectivity in asymptomatic carotid stenosis[J]. J Magn Reson Imaging, 2024, 59(3): 998-1007. DOI: 10.1002/jmri.28872.
[33]
SCHMITZER L, KACZMARZ S, GÖTTLER J, et al. Macro- and microvascular contributions to cerebral structural alterations in patients with asymptomatic carotid artery stenosis[J]. J Cereb Blood Flow Metab, 2024, 44(9): 1629-1642. DOI: 10.1177/0271678X241238935.
[34]
SHERIFF A B, SCARAPICCHIA V, MAZEROLLE E L, et al. A comparison of white matter microstructure and correlates with neuropsychological measures in younger and older adults[J/OL]. PLoS One, 2024, 19(6): e0305818 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/38913655/. DOI: 10.1371/journal.pone.0305818.
[35]
STAMMEN C, FRAENZ C, GRAZIOPLENE R G, et al. Robust associations between white matter microstructure and general intelligence[J]. Cereb Cortex, 2023, 33(11): 6723-6741. DOI: 10.1093/cercor/bhac538.
[36]
LIN C J, CHANG F C, LIN C J, et al. Long-term cognitive and multimodal imaging outcomes after carotid artery stenting vs intensive medication alone for severe asymptomatic carotid stenosis[J]. J Formos Med Assoc, 2022, 121(1Pt 1): 134-143. DOI: 10.1016/j.jfma.2021.02.007.
[37]
LIU L H, HUANG Q, YANG S, et al. Micro-structural white matter abnormalities and cognitive impairment in asymptomatic carotid plaque patients: a DTI study using TBSS analysis[J/OL]. Clin Neurol Neurosurg, 2020, 197: 106096 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32717561/. DOI: 10.1016/j.clineuro.2020.106096.
[38]
GAO L, WANG T, QIAN T Y, et al. Severe asymptomatic carotid stenosis is associated with robust reductions in homotopic functional connectivity[J/OL]. Neuroimage Clin, 2019, 24: 102101 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/31835289/. DOI: 10.1016/j.nicl.2019.102101.
[39]
CAI W D, RYALI S, PASUMARTHY R, et al. Dynamic causal brain circuits during working memory and their functional controllability[J/OL]. Nat Commun, 2021, 12(1): 3314 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34188024/. DOI: 10.1038/s41467-021-23509-x.
[40]
PANIKRATOVA Y R, VLASOVA R M, AKHUTINA T V, et al. Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions[J/OL]. Int J Psychophysiol, 2020, 151: 70-79 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32109499/. DOI: 10.1016/j.ijpsycho.2020.02.013.
[41]
CHEN M L, HE Y, HAO L, et al. Default mode network scaffolds immature frontoparietal network in cognitive development[J]. Cereb Cortex, 2023, 33(9): 5251-5263. DOI: 10.1093/cercor/bhac414.
[42]
HE S H, LIU Z Q, XU Z S, et al. Brain functional network in chronic asymptomatic carotid artery stenosis and occlusion: changes and compensation[J/OL]. Neural Plast, 2020, 2020: 9345602 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/33029129/. DOI: 10.1155/2020/9345602.
[43]
BOOT E M, LEIJSEN E M V, BERGKAMP M I, et al. Structural network efficiency predicts cognitive decline in cerebral small vessel disease[J/OL]. Neuroimage Clin, 2020, 27: 102325 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32622317/. DOI: 10.1016/j.nicl.2020.102325.
[44]
HE S H, DUAN R, LIU Z Q, et al. Altered functional connectivity is related to impaired cognition in left unilateral asymptomatic carotid artery stenosis patients[J/OL]. BMC Neurol, 2021, 21(1): 350 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34517833/. DOI: 10.1186/s12883-021-02385-4.
[45]
TUO J, HE W, YANG S, et al. Disrupted topological organization of functional networks in asymptomatic carotid plaque without significant carotid stenosis: a resting-state fMRI study[J/OL]. Front Hum Neurosci, 2021, 15: 685763 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34421560/. DOI: 10.3389/fnhum.2021.685763.
[46]
XIAO F, WANG T, GAO L, et al. Frequency-dependent changes of the resting BOLD signals predicts cognitive deficits in asymptomatic carotid artery stenosis[J/OL]. Front Neurosci, 2018, 12: 416 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/29977187/. DOI: 10.3389/fnins.2018.00416.
[47]
FAN C H, XU D, MEI H, et al. Hemispheric coupling between structural and functional asymmetries in clinically asymptomatic carotid stenosis with cognitive impairment[J]. Brain Imaging Behav, 2024, 18(1): 192-206. DOI: 10.1007/s11682-023-00823-0.
[48]
PORCU M, COCCO L, CAU R, et al. The mid-term effects of carotid endarterectomy on cognition and regional neural activity analyzed with the amplitude of low frequency fluctuations technique[J]. Neuroradiology, 2022, 64(3): 531-541. DOI: 10.1007/s00234-021-02815-7.
[49]
PORCU M, COCCO L, CAU R, et al. Mid-term effects of carotid endarterectomy on cognition and white matter status evaluated by whole brain diffusion tensor imaging metrics: a preliminary analysis[J/OL]. Eur J Radiol, 2022, 151: 110314 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/35452954/. DOI: 10.1016/j.ejrad.2022.110314.
[50]
WANG Q, XING W, OUYANG L R, et al. Brain alterations of regional homogeneity, degree centrality, and functional connectivity in vulnerable carotid plaque patients with neither clinical symptoms nor routine MRI lesions: a resting-state fMRI study[J/OL]. Front Neurosci, 2022, 16: 937245 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/35992918/. DOI: 10.3389/fnins.2022.937245.
[51]
LIU H Q, GAO W J, CAO W F, et al. Immediate visual reproduction negatively correlates with brain entropy of parahippocampal gyrus and inferior occipital gyrus in bipolar Ⅱ disorder adolescents[J/OL]. BMC Psychiatry, 2023, 23(1): 515 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/37464363/. DOI: 10.1186/s12888-023-05012-3.
[52]
HUANG Y Y, WANG W Y, HEI G R, et al. Altered regional homogeneity and cognitive impairments in first-episode schizophrenia: a resting-state fMRI study[J/OL]. Asian J Psychiatr, 2022, 71: 103055 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/35303593/. DOI: 10.1016/j.ajp.2022.103055.
[53]
FONSECA E, SARRIA-ESTRADA S, PARETO D, et al. Relationship between visuoperceptual functions and parietal structural abnormalities in temporal lobe epilepsy[J]. Brain Imaging Behav, 2023, 17(1): 35-43. DOI: 10.1007/s11682-022-00738-2.
[54]
FRAGA E, MEDINA V, CUARTERO M I, et al. Defective hippocampal neurogenesis underlies cognitive impairment by carotid stenosis-induced cerebral hypoperfusion in mice[J/OL]. Front Cell Neurosci, 2023, 17: 1219847 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/37636586/. DOI: 10.3389/fncel.2023.1219847.
[55]
LINDNER T, CHENG B, HEINZE M, et al. A comparative study of multi and single post labeling delay pseudocontinuous arterial spin labeling in patients with carotid artery stenosis[J/OL]. Magn Reson Imaging, 2024, 106: 18-23 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/38042453/. DOI: 10.1016/j.mri.2023.11.011.

PREV Current status and challenges of MRI technology in the study of the glymphatic system in the human brain
NEXT Application of deep learning-based magnetic resonance imaging in the diagnosis and treatment of coronary artery disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn