Share:
Share this content in WeChat
X
Review
Research progress of T1 and T2 mapping techniques in acute myocardial infarction
NI Luying  ZHANG Qian  CAO He  JIANG Xingyue 

Cite this article as: NI L Y, ZHANG Q, CAO H, et al. Research progress of T1 and T2 mapping techniques in acute myocardial infarction[J]. Chin J Magn Reson Imaging, 2024, 15(11): 198-202, 226. DOI:10.12015/issn.1674-8034.2024.11.031.


[Abstract] Acute myocardial infarction (AMI) is a serious disease threatening to human health, with morbidity and mortality continue to increase. With the popularization of reperfusion therapy and revascularization technology, the prognosis of AMI has been improved, but the mortality rate of patients is still high. Therefore, the early and accurate diagnosis of AMI is of great clinical significance. In recent years, the use of cardiac magnetic resonance (CMR) quantitative techniques, including T1 and T2 mapping techniques, has been advocated, which can accurately and quantitatively assess myocardial tissue characteristics and provide very valuable information for diagnosis of AMI. Compared with traditional CMR, these techniques can directly measure T1 and T2 values, and quantitatively evaluate the extent and degree of myocardial infarction. Accurate assessment of myocardial infarction is of great value for the treatment of AMI and the evaluation of prognosis. This article reviews the principle of T1 and T2 mapping techniques and its research progress in AMI, aiming to improve the accuracy of early clinical diagnosis and provide new ideas and basis for treatment decision-making and prognosis assessment.
[Keywords] acute myocardial infarction;T1 mapping;T2 mapping;cardiac magnetic resonance;magnetic resonance imaging

NI Luying1   ZHANG Qian1   CAO He1   JIANG Xingyue2*  

1 School of Medical Imaging, Binzhou Medical University, Yantai264003, China

2 Department of Radiology, Affiliated Hospital of Binzhou Medical College, Binzhou256603, China

Corresponding author: JIANG X Y, E-mail: xyjiang188@sina.com

Conflicts of interest   None.

Received  2024-08-01
Accepted  2024-11-04
DOI: 10.12015/issn.1674-8034.2024.11.031
Cite this article as: NI L Y, ZHANG Q, CAO H, et al. Research progress of T1 and T2 mapping techniques in acute myocardial infarction[J]. Chin J Magn Reson Imaging, 2024, 15(11): 198-202, 226. DOI:10.12015/issn.1674-8034.2024.11.031.

[1]
RALAPANAWA U, SIVAKANESAN R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review[J]. J Epidemiol Glob Health, 2021, 11(2): 169-177. DOI: 10.2991/jegh.k.201217.001.
[2]
Chinese Cardiovascular Health and Disease Report Compilation Group. Report on cardiovascular health and diseases in China 2022: an updated summary[J]. Chin Circ J, 2023, 38(6): 583-612. DOI: 10.3969/j.issn.1000-3614.2023.06.001.
[3]
UPADHYAYA V D, WONG C, ZAKIR R M, et al. Management of myocardial infarction: emerging paradigms for the future[J]. Methodist Debakey Cardiovasc J, 2024, 20(4): 54-63. DOI: 10.14797/mdcvj.1393.
[4]
ZHANG L, YANG Z G, XU H, et al. Histological Validation of Cardiovascular Magnetic Resonance T1 Mapping for Assessing the Evolution of Myocardial Injury in Myocardial Infarction: An Experimental Study[J]. Korean J Radiol, 2020, 21(12): 1294-1304. DOI: 10.3348/kjr.2020.0107.
[5]
KURISU S, FUJIWARA H. Assessing a Myocardial Area at Risk in Non-ST Elevation Acute Myocardial Infarction Without Wall Motion Abnormalities Using Cardiac Magnetic Resonance and Radionuclide Imaging[J/OL]. Cureus, 2024, 16(2): e55125 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979518/. DOI: 10.7759/cureus.55125.
[6]
WANG X, PU J. Recent Advances in Cardiac Magnetic Resonance for Imaging of Acute Myocardial Infarction[J/OL]. Small Methods, 2024, 8(3): 2301170 [2024-07-31]. https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.202301170. DOI: 10.1002/smtd.202301170.
[7]
KARAMITSOS T D, ARVANITAKI A, KARVOUNIS H, et al. Myocardial Tissue Characterization and Fibrosis by Imaging[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1221-1234. DOI: 10.1016/j.jcmg.2019.06.030.
[8]
YANG M X, HE Y, MA M, et al. Characterization of infarcted myocardium by T1-mapping and its association with left ventricular remodeling[J/OL]. Eur J Radiol, 2021, 137: 109590 [2024-07-31]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X2100070X. DOI: 10.1016/j.ejrad.2021.109590.
[9]
XIANG C L, ZHANG H Y, LI H J, et al. The value of cardiac magnetic resonance post-contrast T1 mapping in improving the evaluation of myocardial infarction[J/OL]. Front Cardiovasc Med, 2023, 10: 1238451 [2024-07-31]. https://doi.org/10.3389/fcvm.2023.1238451. DOI: 10.3389/fcvm.2023.1238451.
[10]
THOMAS R, THAI K, BARRY J, et al. T2-based area-at-risk and edema are influenced by ischemic duration in acute myocardial infarction[J/OL]. J Magn Reson Imaging, 2021, 79: 1-4[2024-07-31]. https://www.sciencedirect.com/science/article/pii/S0730725X21000230. DOI: 10.1016/j.mri.2021.02.011.
[11]
JIA T Y, QIN P X, HU F, et al. Principle of T1 mapping technique and its research progress in myocardial quantification[J]. Chin J Magn Reson Imag, 2022, 13(3): 151-158. DOI: 10.12015/issn.1674-8034.2022.03.037.
[12]
YUAN B Y, LI B, LIU J H, et al. Application and research progress of T1-mapping in acute and chronic myocardial infarction[J]. Chin J Lab Diagn, 2022, 26(7): 1088-1090. DOI: 10.3969/j.issn.1007-4287.2022.07.038.
[13]
SHEAGREN C D, CAO T, PATEL J H, et al. Motion-compensated T1 mapping in cardiovascular magnetic resonance imaging: a technical review[J/OL]. Front Cardiovasc Med, 2023, 10: 1160183 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542904/. DOI: 10.3389/fcvm.2023.1160183.
[14]
FERREIRA V M, WIJESURENDRA R S, LIU A, et al. Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 77 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552368/. DOI: 10.1186/s12968-015-0182-5.
[15]
RAJIAH P S, FRANÇOIS C J, LEINER T. Cardiac MRI: State of the Art[J/OL]. Radiology, 2023 [2024-03-17]. https://pubs.rsna.org/doi/10.1148/radiol.223008. DOI: 10.1148/radiol.223008.
[16]
DUN Y T, KANG L Q. Progress of MRI in assessing remote myocardium after acute myocardial infarction[J]. Int J Med Radiol, 2024, 47(1): 60-65. DOI: 10.19300/j.2024.Z20888.
[17]
SADO D M, FLETT A S, BANYPERSAD S M, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease[J]. Heart, 2012, 98(19): 1436-1441. DOI: 10.1136/heartjnl-2012-302346.
[18]
PAN J A, KERWIN M J, SALERNO M. Native T1 Mapping, Extracellular Volume Mapping, and Late Gadolinium Enhancement in Cardiac Amyloidosis: A Meta-analysis[J]. JACC Cardiovasc Imaging, 2020, 13(6): 1299-1310. DOI: 10.1016/j.jcmg.2020.03.010.
[19]
CADOUR F, QUEMENEUR M, BIERE L, et al. Prognostic value of cardiovascular magnetic resonance T1 mapping and extracellular volume fraction in nonischemic dilated cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2023, 25: 7 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900939/. DOI: 10.1186/s12968-023-00919-y.
[20]
RAAFS A G, ADRIAANS B P, HENKENS M T H M, et al. Myocardial fibrosis assessment using T1 and ECV mapping with histologic validation in chronic dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2022, 15(10): 1828-1830. DOI: 10.1016/j.jcmg.2022.05.002.
[21]
AQUARO G D, MONASTERO S, TODIERE G, et al. Diagnostic role of native T1 mapping compared to conventional magnetic resonance techniques in cardiac disease in a real-life cohort[J/OL]. Diagnostics, 2023, 13(14): 2461 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/37510205/. DOI: 10.3390/diagnostics13142461.
[22]
EMRICH T, HALFMANN M, SCHOEPF U J, et al. CMR for myocardial characterization in ischemic heart disease: state-of-the-art and future developments[J/OL]. Eur Radiol Exp, 2021, 5(1): 14 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990980/. DOI: 10.1186/s41747-021-00208-2.
[23]
XIANG C L, LI H J, HUANG L, et al. Progress in the use of cardiac magnetic resonance imaging in myocardial infarction [J]. J Clin Radiol, 2022, 41(4): 779-785. DOI: 10.13437/j.cnki.jcr.2022.04.024.
[24]
XU J, ZHAO S H, LU M J. Research advances in imaging techniques and clinical applications of myocardial T\n 2 mapping\n[J]. Chin J Radiol, 2020, 54(11): 1132-1136. DOI: 10.3760/cma.j.cn112149-20191104-00885.
[25]
BUSTIN A, MILOTTA G, ISMAIL T F, et al. Accelerated free-breathing whole-heart 3D T2 mapping with high isotropic resolution[J]. Magn Reson Med, 2020, 83(3): 988-1002. DOI: 10.1002/mrm.27989.
[26]
TOPRICEANU C C, PIERCE I, MOON J C, et al. T2 and T2 mapping and weighted imaging in cardiac MRI[J/OL]. Magn Reson Imaging, 2022, 93: 15-32 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/35914654/. DOI: 10.1016/j.mri.2022.07.012.
[27]
BEIJNINK C W H, VAN DER HOEVEN N W, KONIJNENBERG L S F, et al. Cardiac MRI to visualize myocardial damage after ST-segment elevation myocardial infarction: a review of its histologic validation[J]. Radiology, 2021, 301(1): 4-18. DOI: 10.1148/radiol.2021204265.
[28]
OGIER A C, BUSTIN A, COCHET H, et al. The Road Toward Reproducibility of Parametric Mapping of the Heart: A Technical Review[J/OL]. Front Cardiovasc Med, 2022, 9: 876475 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120534/. DOI: 10.3389/fcvm.2022.876475.
[29]
BUSTIN A, HUA A, MILOTTA G, et al. High-Spatial-Resolution 3D Whole-Heart MRI T2 Mapping for Assessment of Myocarditis[J]. Radiology, 2021, 298(3): 578-586. DOI: 10.1148/radiol.2021201630.
[30]
KHACHATOORIAN Y, FUISZ A, FRISHMAN W H, et al. The significance of parametric mapping in advanced cardiac imaging[J/OL]. Cardiol Rev, 2024 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/38595125/. DOI: 10.1097/CRD.0000000000000695.
[31]
URBAŃCZYK-ZAWADZKA M, BANYŚ R, KWIECIEŃ E, et al. The role of cardiac magnetic resonance non-contrast T1 mapping in differentiation between injured and salvaged myocardium in acute and chronic myocardial infarction[J]. Postepy Kardiol Interwencyjnej, 2022, 18(4): 472-475. DOI: 10.5114/aic.2022.121032.
[32]
NAKOU E, PATEL R K, FONTANA M, et al. Cardiovascular magnetic resonance parametric mapping techniques: clinical applications and limitations[J/OL]. Curr Cardiol Rep, 2021, 23(12): 185 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/34762189/. DOI: 10.1007/s11886-021-01607-y.
[33]
AHERNE E, CHOW K, CARR J. Cardiac T1 mapping: Techniques and applications[J]. J Magn Reson Imaging, 2020, 51(5): 1336-1356. DOI: 10.1002/jmri.26866.
[34]
SUN Z, HU Y Y, ZHAO L, et al. The exploration of T1 mapping "one-stop" evaluation of different myocardial tissues in reperfused AMI patients[J]. J Clin Radiol, 2022, 41(12): 2295-2300. DOI: 10.13437/j.cnki.jcr.2022.12.031.
[35]
TAHIR E, SINN M, BOHNEN S, et al. Acute versus chronic myocardial infarction: diagnostic accuracy of quantitative native T1 and T2 mapping versus assessment of edema on standard T2-weighted cardiovascular MR images for differentiation[J]. Radiology, 2017, 285(1): 83-91. DOI: 10.1148/radiol.2017162338.
[36]
JEROSCH-HEROLD M, COELHO-FILHO O. Cardiac MRI T1 and T2 mapping: a new crystal ball?[J]. Radiology, 2022, 305(2): 327-328. DOI: 10.1148/radiol.221395.
[37]
ZHAO X H, LIU X F, MA H Y, et al. T1, T2 mapping and extracellular volume diagnostic value in patients with acute myocardial infarction[J]. J Pract Med, 2021, 37(10): 1337-1341. DOI: 10.3969/j.issn.1006-5725.2021.10.021.
[38]
CARRABBA N, AMICO M A, GUARICCI A I, et al. CMR Mapping: The 4th-Era Revolution in Cardiac Imaging[J/OL]. J Clin Med, 2024, 13(2): 337 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816333/. DOI: 10.3390/jcm13020337.
[39]
PAMBIANCHI G, GIANNETTI M, MARCHITELLI L, et al. Papillary Muscle Involvement during Acute Myocardial Infarction: Detection by Cardiovascular Magnetic Resonance Using T1 Mapping Technique and Papillary Longitudinal Strain[J/OL]. J Clin Med, 2023, 12(4): 1497 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963367/. DOI: 10.3390/jcm12041497.
[40]
CHEN B H, AN D A, HE J, et al. Myocardial extracellular volume fraction allows differentiation of reversible versus irreversible myocardial damage and prediction of adverse left ventricular remodeling of ST-elevation myocardial infarction[J]. J Magn Reson Imaging, 2020, 52(2): 476-487. DOI: 10.1002/jmri.27047.
[41]
WAMIL M, BORLOTTI A, LIU D, et al. Combined T1-mapping and tissue tracking analysis predicts severity of ischemic injury following acute STEMI-an Oxford Acute Myocardial Infarction (OxAMI) study[J]. Int J Cardiovasc Imaging, 2019, 35(7): 1297-1308. DOI: 10.1007/s10554-019-01542-8.
[42]
CHEN B H, AN D A, WU C W, et al. Prognostic significance of non-infarcted myocardium correlated with microvascular impairment evaluated dynamically by native T1 mapping[J/OL]. Insights Imaging, 2023, 14: 50 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027971/. DOI: 10.1186/s13244-022-01360-y.
[43]
ALKHALIL M, BORLOTTI A, DE MARIA G L, et al. Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction[J]. J Cardiovasc Magn Reson, 2020, 22(1): 3 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/31915031/. DOI: 10.1186/s12968-019-0593-9.
[44]
SHIN J M, CHOI E Y, PARK C H, et al. Quantitative T1 mapping for detecting microvascular obstruction in reperfused acute myocardial infarction: comparison with late gadolinium enhancement imaging[J]. Korean J Radiol, 2020, 21(8): 978-986. DOI: 10.3348/kjr.2019.0736.
[45]
MA Q M, MA Y, YU T T, et al. Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction[J]. Korean J Radiol, 2021, 22(4): 535-546. DOI: 10.3348/kjr.2019.0969.
[46]
CHEN B H, WU C W, AN D A, et al. Myocardial extracellular volume quantified by cardiac magnetic resonance predicts left ventricular aneurysm following acute myocardial infarction[J]. Eur Radiol, 2023, 33(1): 283-293. DOI: 10.1007/s00330-022-08995-x.
[47]
FERREIRA V M, PIECHNIK S K. CMR Parametric Mapping as a Tool for Myocardial Tissue Characterization[J]. Korean Circ J, 2020, 50(8): 658-676. DOI: 10.4070/kcj.2020.0157.
[48]
JIA S Q, YAN C L, JIN Y H, et al. Research progress on the application of magnetic resonance T2 mapping technology in heart disease[J]. Chin J Magn Reson Imag, 2023, 14(6): 145-150. DOI: 10.12015/issn.1674-8034.2023.06.026.
[49]
LIU X F, HAN Y, WANG R P, et al. Application value of T2 mapping technologyin the differential diagnosis of acute myocarditis and acute myocardial infarction[J]. J Pract Med, 2019, 35(8): 1326-1330. DOI: 10.3969/j.issn.1006-5725.2019.08.029.
[50]
ALKHALIL M, DE MARIA G L, AKBAR N, et al. Prospects for Precision Medicine in Acute Myocardial Infarction: Patient-Level Insights into Myocardial Injury and Repair[J/OL]. J Clin Med, 2023, 12(14): 4668 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380764/. DOI: 10.3390/jcm12144668.
[51]
KIM H W, VAN ASSCHE L, JENNINGS R B, et al. Relationship of T2-weighted MRI myocardial hyperintensity and the ischemic area-at-risk[J]. Circ Res, 2015, 117(3): 254-265. DOI: 10.1161/CIRCRESAHA.117.305771.
[52]
O'BRIEN A T, GIL K E, VARGHESE J, et al. T2 mapping in myocardial disease: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 33 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/35659266/. DOI: 10.1186/s12968-022-00866-0.
[53]
GÓMEZ-TALAVERA S, FERNÁNDEZ-JIMÉNEZ R, GALÁN-ARRIOLA C, et al. Variations in T2-mapping-assessed area at risk after experimental ischemia/reperfusion[J]. J Cardiovasc Transl Res, 2021, 14(6): 1040-1042. DOI: 10.1007/s12265-021-10120-0.
[54]
ASSIMOPOULOS S, SHIE N, RAMANAN V, et al. Hemorrhage promotes chronic adverse remodeling in acute myocardial infarction: a T1, T2 and BOLD study[J/OL]. NMR Biomed, 2021, 34(1): e4404 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/32875632/. DOI: 10.1002/nbm.4404.
[55]
FERRÉ-VALLVERDÚ M, SÁNCHEZ-LACUESTA E, PLAZA-LÓPEZ D, et al. Prognostic value and clinical predictors of intramyocardial hemorrhage measured by CMR T2* sequences in STEMI[J]. Int J Cardiovasc Imaging, 2021, 37(5): 1735-1744. DOI: 10.1007/s10554-020-02142-7.
[56]
WEN J, QIAO J, TANG Y, et al. Cardiac magnetic resonance imaging detection of intramyocardial hemorrhage in patients with ST-elevated myocardial infarction: comparison between susceptibility-weighted imaging and T1/T2 mapping techniques[J]. Quant Imaging Med Surg, 2024, 14(1): 476-488. DOI: 10.21037/qims-23-591.
[57]
CUI Q, HE Q, GE X H, et al. Prognostic significance of T2 mapping in evaluating myocardium alterations in patients with ST segment elevation myocardial infarction[J]. Chin Crit Care Med, 2023, 35(12): 1304-1308. DOI: 10.3760/cma.j.cn121430-20230914-00779.
[58]
EYYUPKOCA F, KARAKUS G, GOK M, et al. Association of changes in the infarct and remote zone myocardial tissue with cardiac remodeling after myocardial infarction: a T1 and T2 mapping study[J]. Int J Cardiovasc Imaging, 2022, 38(2): 363-373. DOI: 10.1007/s10554-021-02490-y.
[59]
CUI Q, YU J, GE X H, et al. Ischemic cardiomyopathy is the quantitative imaging diagnostic value of acute myocardial infarction[J]. Chin Crit Care Med, 2022, 34(2): 178-182. DOI: 10.3760/cma.J.cn121430-20210825-01272.
[60]
LI Y, WANG G, WANG X, et al. Prognostic significance of myocardial salvage assessed by cardiac magnetic resonance in reperfused ST-segment elevation myocardial infarction[J/OL]. Front Cardiovasc Med, 2022, 9: 924428 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468362/. DOI: 10.3389/fcvm.2022.924428.

PREV Application of deep learning-based magnetic resonance imaging in the diagnosis and treatment of coronary artery disease
NEXT Research progress of magnetic resonance imaging to predict the efficacy of neoadjuvant therapy for HER-2 positive breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn