Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging to predict the efficacy of neoadjuvant therapy for HER-2 positive breast cancer
HE Zhiyuan  WANG Weiwei  SUN Zhanguo 

Cite this article as: HE Z Y, WANG W W, SUN Z G. Research progress of magnetic resonance imaging to predict the efficacy of neoadjuvant therapy for HER-2 positive breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(11): 203-208. DOI:10.12015/issn.1674-8034.2024.11.032.


[Abstract] Breast cancer is the most common malignant tumor in women, among which human epidermal growth factor receptor-2 (HER-2) positive breast cancer is characterized by strong aggressiveness, high recurrence rate and poor prognosis, and is not sensitive to endocrine therapy and conventional chemotherapy. Neoadjuvant therapy (NAT) has been shown to be an effective treatment for HER-2 positive breast cancer. However, not all patients can benefit from NAT. Therefore, it is of great clinical significance to predict the efficacy of NAT before or at the early stage of treatment and then to adjust the treatment regimen for NAT insensitive patients as early as possible. Magnetic resonance imaging (MRI) has the advantages of non-invasive, multi-sequence and multi-parameter acquisition, and is currently a common examination method for the diagnosis of breast cancer diagnosis as well as the evaluation of NAT efficacy. This article reviews the research progresses, limitations and development prospects of MRI in predicting the NAT efficacy of HER-2 positive breast cancer to provide references for future clinical researches and applications.
[Keywords] breast cancer;neoadjuvant therapy;magnetic resonance imaging;radiomics;machine learning

HE Zhiyuan1   WANG Weiwei2   SUN Zhanguo2*  

1 Jining Medical University College of Clinical Medicine, Jining272013, China

2 Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining272029, China

Corresponding author: SUN Z G, E-mail: yingxiangszg@163.com

Conflicts of interest   None.

Received  2024-07-11
Accepted  2024-11-10
DOI: 10.12015/issn.1674-8034.2024.11.032
Cite this article as: HE Z Y, WANG W W, SUN Z G. Research progress of magnetic resonance imaging to predict the efficacy of neoadjuvant therapy for HER-2 positive breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(11): 203-208. DOI:10.12015/issn.1674-8034.2024.11.032.

[1]
NOLAN E, LINDEMAN G J, VISVADER J E. Deciphering breast cancer: from biology to the clinic[J]. Cell, 2023, 186(8): 1708-1728. DOI: 10.1016/j.cell.2023.01.040.
[2]
SCHLAM I, SWAIN S M. HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now[J/OL]. NPJ Breast Cancer, 2021, 7(1): 56 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/34016991/. DOI: 10.1038/s41523-021-00265-1.
[3]
LIAN X, GUO D Q, QIAN L X. Characteristics of breast background parenchymal enhancement on MRI before and after neoadjuvant chemotherapy in patients with HER2 positive breast cancer[J]. Radiol Pract, 2022, 37(6): 723-728. DOI: 10.13609/j.cnki.1000-0313.2022.06.009.
[4]
SWAIN S M, SHASTRY M, HAMILTON E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov, 2023, 22(2): 101-126. DOI: 10.1038/s41573-022-00579-0.
[5]
KORDE L A, SOMERFIELD M R, CAREY L A, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. J Clin Oncol, 2021, 39(13): 1485-1505. DOI: 10.1200/JCO.20.03399.
[6]
HUOBER J, HOLMES E, BASELGA J, et al. Survival outcomes of the NeoALTTO study (BIG1-06): updated results of a randomised multicenter phase Ⅲ neoadjuvant clinical trial in patients with HER2-positive primary breast cancer[J/OL]. Eur J Cancer, 2019, 118: 169-177 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/31377477/. DOI: 10.1016/j.ejca.2019.04.038.
[7]
ABDEL-RAZEQ H, KHALIL H, ASSI H I, et al. Treatment Strategies for Residual Disease following Neoadjuvant Chemotherapy in Patients with Early-Stage Breast Cancer[J]. Curr Oncol, 2022, 29(8): 5810-5822. DOI: 10.3390/curroncol29080458.
[8]
WOESTE M R, BHUTIANI N, DONALDSON M, et al. Evaluating the effect of neoadjuvant chemotherapy on surgical outcomes after breast conserving surgery[J]. J Surg Oncol, 2021, 123(2): 439-445. DOI: 10.1002/jso.26301.
[9]
WANG M F, DU S Y, GAO S, et al. MRI-based tumor shrinkage patterns after early neoadjuvant therapy in breast cancer: correlation with molecular subtypes and pathological response after therapy[J/OL]. Breast Cancer Res, 2024, 26(1): 26 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/38347619/. DOI: 10.1186/s13058-024-01781-1.
[10]
SHI Z W, HUANG X M, CHENG Z L, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J/OL]. Radiology, 2023, 308(1): e222830 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/37432083/. DOI: 10.1148/radiol.222830.
[11]
RIBRAG A, LISSAVALID E, FAYARD J, et al. Initial MRI findings predictive of a pathological complete response to neoadjuvant treatments in HER2-positive breast cancers[J/OL]. Eur J Radiol, 2024, 178: 111625 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/39024664/. DOI: 10.1016/j.ejrad.2024.111625.
[12]
KIM S Y, LEE J S, CHO N, et al. Deep-learning based discrimination of pathologic complete response using MRI in HER2-positive and triple-negative breast cancer[J/OL]. Sci Rep, 2024, 14(1): 23065 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/39367159/. DOI: 10.1038/s41598-024-74276-w.
[13]
WANG X, ZHU L Y, ZHA X M, et al. Whole-lesion histogram analysis of apparent diffusion coefficient for the prediction of pathological complete response to neoadjuvant chemotherapy in different subtypes of breast cancer[J]. Chin J Radiol, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-20190522-00439.
[14]
MICHISHITA S, KIM S J, SHIMAZU K, et al. Prediction of pathological complete response to neoadjuvant chemotherapy by magnetic resonance imaging in breast cancer patients[J]. Breast, 2015, 24(2): 159-165. DOI: 10.1016/j.breast.2015.01.001.
[15]
MALHAIRE C, SELHANE F, SAINT-MARTIN M J, et al. Exploring the added value of pretherapeutic MR descriptors in predicting breast cancer pathologic complete response to neoadjuvant chemotherapy[J]. Eur Radiol, 2023, 33(11): 8142-8154. DOI: 10.1007/s00330-023-09797-5.
[16]
CHOUDHERY S, GOMEZ-CARDONA D, FAVAZZA C P, et al. MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy[J/OL]. Acad Radiol, 2022, 29(Suppl 1): S145-S154 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/33160859/. DOI: 10.1016/j.acra.2020.10.020.
[17]
CHE S N, ZHAO X M, OU Y H, et al. Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer[J/OL]. Medicine, 2016, 95(4): e2420 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/26825883/. DOI: 10.1097/MD.0000000000002420.
[18]
ZHANG R, LIU Y L, LIU D H, et al. Research progress of functional magnetic resonance imaging techniques for evaluating the response to neoadjuvant chemotherapy in breast cancer[J]. Chin J Magn Reson Imag, 2019, 10(8): 620-624. DOI: 10.12015/issn.1674-8034.2019.08.013.
[19]
ZHU X L, WU J L. Application progress of MRI radiomics in the efficacy and prognosis of neoadjuvant chemotherapy for breast cancer[J]. Chin J Magn Reson Imag, 2022, 13(3): 159-161, 165. DOI: 10.12015/issn.1674-8034.2022.03.038.
[20]
ZHANG C, XU G H. Progress in evaluating the efficacy of neoadjuvant chemotherapy for breast cancer based on DCE-MRI features[J]. J Cancer Contr Treat, 2023, 36(7): 595-600. DOI: 10.3969/j.issn.1674-0904.2023.07.008.
[21]
LV G J, ZHOU Y M, ZHENG D D, et al. Comparison of model-free and model-based dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic parameters for predicting breast cancers' response to neoadjuvant chemotherapy[J]. J Comput Assist Tomogr, 2020, 44(2): 269-274. DOI: 10.1097/RCT.0000000000001001.
[22]
CHAMMING'S F, UENO Y, ALDIS A, et al. Enhancement of breast cancer on pre-treatment dynamic contrast-enhanced MRI using computer-aided detection is associated with response to neo-adjuvant chemotherapy[J]. Diagn Interv Imaging, 2018, 99(12): 773-781. DOI: 10.1016/j.diii.2018.09.001.
[23]
RAMTOHUL T, TESCHER C, VAFLARD P, et al. Prospective evaluation of ultrafast breast MRI for predicting pathologic response after neoadjuvant therapies[J]. Radiology, 2022, 305(3): 565-574. DOI: 10.1148/radiol.220389.
[24]
FUSCO R, GRANATA V, MAIO F, et al. Textural radiomic features and time-intensity curve data analysis by dynamic contrast-enhanced MRI for early prediction of breast cancer therapy response: preliminary data[J/OL]. Eur Radiol Exp, 2020, 4(1): 8 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/32026095/. DOI: 10.1186/s41747-019-0141-2.
[25]
CHENG Q Q, HUANG J X, LIANG J Y, et al. The diagnostic performance of DCE-MRI in evaluating the pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis[J/OL]. Front Oncol, 2020, 10: 93 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/32117747/. DOI: 10.3389/fonc.2020.00093.
[26]
HE M Z, SU J W, RUAN H P, et al. Nomogram based on quantitative dynamic contrast-enhanced magnetic resonance imaging, apparent diffusion coefficient, and clinicopathological features for early prediction of pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy[J]. Quant Imaging Med Surg, 2023, 13(7): 4089-4102. DOI: 10.21037/qims-22-869.
[27]
RELLA R, BUFI E, BELLI P, et al. Association between contralateral background parenchymal enhancement on MRI and outcome in patients with unilateral invasive breast cancer receiving neoadjuvant chemotherapy[J]. Diagn Interv Imaging, 2022, 103(10): 486-494. DOI: 10.1016/j.diii.2022.04.004.
[28]
HUO X, WU B, FANG D G, et al. The influencing factors of neoadjuvant chemotherapy for HER2-positive breast cancer and the establishment of the prediction model of line chart[J]. J N Sichuan Med Coll, 2023, 38(1): 126-129, 136. DOI: 10.3969/j.issn.1005-3697.2023.01.030.
[29]
REN Z, PINEDA F D, HOWARD F M, et al. Bilateral asymmetry of quantitative parenchymal kinetics at ultrafast DCE-MRI predict response to neoadjuvant chemotherapy in patients with HER2+ breast cancer[J/OL]. Magn Reson Imaging, 2023, 104: 9-15 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/37611646/. DOI: 10.1016/j.mri.2023.08.003.
[30]
LI Z F, LIU X R, WANG Z Y, et al. Predicting the efficacy of neoadjuvant chemotherapy for breast cancer by combining hormone receptor and human epidermal growth factor receptor 2 with ADC maximum[J]. Chin J Magn Reson Imag, 2023, 14(10): 71-77. DOI: 10.12015/issn.1674-8034.2023.10.013.
[31]
GULLO R L, PARTRIDGE S C, SHIN H J, et al. Update on DWI for breast cancer diagnosis and treatment monitoring[J/OL]. AJR Am J Roentgenol, 2024, 222(1): e2329933 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/37850579/. DOI: 10.2214/AJR.23.29933.
[32]
SUROV A, PECH M, MEYER H J, et al. Evaluation of pretreatment ADC values as predictors of treatment response to neoadjuvant chemotherapy in patients with breast cancer - a multicenter study[J/OL]. Cancer Imaging, 2022, 22(1): 68 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/36494872/. DOI: 10.1186/s40644-022-00501-2.
[33]
SUO S T, YIN Y, GENG X C, et al. Diffusion-weighted MRI for predicting pathologic response to neoadjuvant chemotherapy in breast cancer: evaluation with mono-, Bi-, and stretched-exponential models[J/OL]. J Transl Med, 2021, 19(1): 236 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/34078388/. DOI: 10.1186/s12967-021-02886-3.
[34]
LIANG X H, CHEN X F, YANG Z Q, et al. Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer[J/OL]. BMC Cancer, 2022, 22(1): 1250 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/36460972/. DOI: 10.1186/s12885-022-10315-x.
[35]
OTA R, KATAOKA M, IIMA M, et al. Evaluation of pathological complete response after neoadjuvant systemic treatment of invasive breast cancer using diffusion-weighted imaging compared with dynamic contrast-enhanced based kinetic analysis[J/OL]. Eur J Radiol, 2022, 154: 110372 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/35667297/. DOI: 10.1016/j.ejrad.2022.110372.
[36]
CHEUNG S M, WU W S, SENN N, et al. Towards detection of early response in neoadjuvant chemotherapy of breast cancer using Bayesian intravoxel incoherent motion[J/OL]. Front Oncol, 2023, 13: 1277556 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/38125950/. DOI: 10.3389/fonc.2023.1277556.
[37]
XIONG F K, CUI F, GONG L G. The application value of IVIM in the assessment of early reaction after neoadjuvant chemotherapy for breast cancer[J]. J China Clin Med Imag, 2019, 30(2): 102-105. DOI: 10.12117/jccmi.2019.02.007.
[38]
WU P Q, LIU Z Y, LIANG Y L, et al. Advances in application of intravoxel incoherent motion diffusion weighted imaging in breast cancer[J]. Int J Med Radiol, 2017, 40(6): 690-694. DOI: 10.19300/j.2017.Z5157.
[39]
RAHMAT K, MUMIN N A, HAMID M T R, et al. MRI breast: current imaging trends, clinical applications, and future research directions[J]. Curr Med Imaging, 2022, 18(13): 1347-1361. DOI: 10.2174/1573405618666220415130131.
[40]
CHENG L, ZHANG Y C, WANG C W. Evaluation of the early effcacy of IVIM and DKI in neoadjuvant chemotherapy for breast cancer[J]. J Imag Res Med Appl, 2022, 6(16): 19-21. DOI: 10.3969/j.issn.2096-3807.2022.16.007.
[41]
FOWLER A M, STRIGEL R M. Clinical advances in PET-MRI for breast cancer[J/OL]. Lancet Oncol, 2022, 23(1): e32-e43 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/34973230/. DOI: 10.1016/S1470-2045(21)00577-5.
[42]
HATT M, GROHEUX D, MARTINEAU A, et al. Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer[J]. J Nucl Med, 2013, 54(3): 341-349. DOI: 10.2967/jnumed.112.108837.
[43]
SEKINE C, UCHIYAMA N, WATASE C, et al. Preliminary experiences of PET/MRI in predicting complete response in patients with breast cancer treated with neoadjuvant chemotherapy[J/OL]. Mol Clin Oncol, 2022, 16(2): 50 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/35070299/. DOI: 10.3892/mco.2021.2483.
[44]
SCHMITZ A M T, TEIXEIRA S C, PENGEL K E, et al. Monitoring tumor response to neoadjuvant chemotherapy using MRI and 18F-FDG PET/CT in breast cancer subtypes[J/OL]. PLoS One, 2017, 12(5): e0176782 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/28531188/. DOI: 10.1371/journal.pone.0176782.
[45]
LIU S S, DU S Y, GAO S, et al. A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients[J/OL]. BMC Cancer, 2023, 23(1): 15 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/36604679/. DOI: 10.1186/s12885-022-10496-5.
[46]
LI Q, HUANG Y, XIAO Q, et al. Value of radiomics based on CE-MRI for predicting the efficacy of neoadjuvant chemotherapy in invasive breast cancer[J/OL]. Br J Radiol, 2022, 95(1139): 20220186 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/36005646/. DOI: 10.1259/bjr.20220186.
[47]
LI Q, XIAO Q, LI J W, et al. MRI-based radiomic signature as a prognostic biomarker for HER2-positive invasive breast cancer treated with NAC[J/OL]. Cancer Manag Res, 2020, 12: 10603-10613 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/33149669/. DOI: 10.2147/CMAR.S271876.
[48]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[49]
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/31002322/. DOI: 10.1001/jamanetworkopen.2019.2561.
[50]
HATAMIKIA S, GEORGE G, SCHWARZHANS F, et al. Breast MRI radiomics and machine learning-based predictions of response to neoadjuvant chemotherapy - How are they affected by variations in tumor delineation?[J/OL]. Comput Struct Biotechnol J, 2024, 23: 52-63 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/38125296/. DOI: 10.1016/j.csbj.2023.11.016.
[51]
BITENCOURT A G V, GIBBS P, ROSSI SACCARELLI C, et al. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer[J/OL]. EBioMedicine, 2020, 61: 103042 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/33039708/. DOI: 10.1016/j.ebiom.2020.103042.
[52]
FANIZZI A, LATORRE A, BAVARO D A, et al. Prognostic power assessment of clinical parameters to predict neoadjuvant response therapy in HER2-positive breast cancer patients: a machine learning approach[J]. Cancer Med, 2023, 12(22): 20663-20669. DOI: 10.1002/cam4.6512.
[53]
HUANG Y H, ZHU T, ZHANG X L, et al. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study[J/OL]. EClinicalMedicine, 2023, 58: 101899 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/37007742/. DOI: 10.1016/j.eclinm.2023.101899.
[54]
CABALLO M, SANDERINK W B G, HAN L Y, et al. Four-dimensional machine learning radiomics for the pretreatment assessment of breast cancer pathologic complete response to neoadjuvant chemotherapy in dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2023, 57(1): 97-110. DOI: 10.1002/jmri.28273.
[55]
HUANG Y H, CHEN W B, ZHANG X L, et al. Prediction of tumor shrinkage pattern to neoadjuvant chemotherapy using a multiparametric MRI-based machine learning model in patients with breast cancer[J/OL]. Front Bioeng Biotechnol, 2021, 9: 662749 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/34295877/. DOI: 10.3389/fbioe.2021.662749.

PREV Research progress of T1 and T2 mapping techniques in acute myocardial infarction
NEXT Clinical application and progress of synthetic MRI in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn