Share:
Share this content in WeChat
X
Review
Potential of the nuclear overhauser effect in precision medicine: From basic research to clinical applications
ZHAO Nannan  XU Dongyuan  YAN Gen 

Cite this article as: ZHAO N N, XU D Y, YAN G. Potential of the nuclear overhauser effect in precision medicine: From basic research to clinical applications[J]. Chin J Magn Reson Imaging, 2024, 15(11): 227-234. DOI:10.12015/issn.1674-8034.2024.11.036.


[Abstract] The nuclear overhauser effect (NOE) in nuclear magnetic resonance (NMR) spectroscopy is a critical phenomenon that provides essential information on intra- and intermolecular distances and conformations. By analyzing the NOE effect, researchers can gain deeper insights into molecular structures, particularly the three-dimensional conformations of complex biomolecules and pharmaceutical compounds, which are of great significance for the advancement of modern medicine. With the rapid growth of precision medicine, the application potential of the NOE effect in drug design, disease diagnosis, and personalized therapy has become increasingly prominent. This review focuses on the various applications of the NOE effect in precision medicine, with an emphasis on its contributions to elucidating drug-target interactions, detecting conformational changes in biomolecules under pathological conditions, and identifying biomarkers for personalized treatment. Specific case studies and experimental data are incorporated to further explain the role of the NOE effect in bridging basic research and clinical applications. Through this review, the broad application prospects of the NOE effect in modern medicine are demonstrated, and potential breakthroughs in precision medicine are highlighted, offering new directions and insights for future research and applications.
[Keywords] glioblastoma;Alzheimer's disease;nuclear magnetic resonance;nuclear overhauser effect;magnetic resonance imaging;precision medicine

ZHAO Nannan1, 2   XU Dongyuan2   YAN Gen1*  

1 Department of Radiology, Xiamen Medical College Affiliated Second Hospital, Xiamen361000, China

2 Department of Center of Morphological Experiment, Medical College of Yanbian University, Yanji133002, China

Corresponding author: YAN G, E-mail: gyan@stu.edu.cn

Conflicts of interest   None.

Received  2024-06-25
Accepted  2024-11-04
DOI: 10.12015/issn.1674-8034.2024.11.036
Cite this article as: ZHAO N N, XU D Y, YAN G. Potential of the nuclear overhauser effect in precision medicine: From basic research to clinical applications[J]. Chin J Magn Reson Imaging, 2024, 15(11): 227-234. DOI:10.12015/issn.1674-8034.2024.11.036.

[1]
SISODIYA S M. Precision medicine and therapies of the future[J/OL]. Epilepsia, 2021, 62(Suppl 2): S90-S105 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/32776321/. DOI: 10.1111/epi.16539.
[2]
SHAH D M, A B E, DIERCKS T, et al. Rapid protein-ligand costructures from sparse NOE data[J]. J Med Chem, 2012, 55(23): 10786-10790. DOI: 10.1021/jm301396d.
[3]
EICHMÜLLER C, SCHÜLER W, KONRAT R, et al. Simultaneous measurement of intra- and intermolecular NOEs in differentially labeled protein-ligand complexes[J]. J Biomol NMR, 2001, 21(2): 107-116. DOI: 10.1023/a:1012480532569.
[4]
CHEN C H, WANG Y Y, HILTY C. Intermolecular interactions determined by NOE build-up in macromolecules from hyperpolarized small molecules[J/OL]. Methods, 2018, 138/139: 69-75 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/29471063/. DOI: 10.1016/j.ymeth.2018.02.015.
[5]
XU J D, YADAV N N, BAR-SHIR A, et al. Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI[J]. Magn Reson Med, 2014, 71(5): 1798-1812. DOI: 10.1002/mrm.24850.
[6]
TÖRNER R, AWAD R, GANS P, et al. Spectral editing of intra- and inter-chain methyl-methyl NOEs in protein complexes[J]. J Biomol NMR, 2020, 74(1): 83-94. DOI: 10.1007/s10858-019-00293-x.
[7]
MANU V S, OLIVIERI C, VEGLIA G. Water irradiation devoid pulses enhance the sensitivity of 1H, 1H nuclear Overhauser effects[J]. J Biomol NMR, 2023, 77(1): 1-14. DOI: 10.1007/s10858-022-00407-y.
[8]
CHI C N, STROTZ D, RIEK R, et al. NOE-derived methyl distances from a 360 kDa proteasome complex[J]. Chemistry, 2018, 24(9): 2270-2276. DOI: 10.1002/chem.201705551.
[9]
CLAY M C, SALEH T, KAMATHAM S, et al. Progress toward automated methyl assignments for methyl-TROSY applications[J/OL]. Structure, 2022, 30(1): 69-79.e2 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/34914892/. DOI: 10.1016/j.str.2021.11.009.
[10]
DELISLE C F, MENDIS H B, LORIEAU J L. Super resolution NOESY spectra of proteins[J]. J Biomol NMR, 2019, 73(3/4): 105-116. DOI: 10.1007/s10858-019-00231-x.
[11]
NOVAKOVIC M, KUPČE Ē, SCHERF T, et al. Magnetization transfer to enhance NOE cross-peaks among labile protons: applications to imino-imino sequential walks in SARS-CoV-2-derived RNAs[J]. Angew Chem Weinheim Bergstr Ger, 2021, 133(21): 11991-11998. DOI: 10.1002/ange.202015948.
[12]
CHO Y, RYU H, LIM G, et al. Improving geometric validation metrics and ensuring consistency with experimental data through TrioSA: an NMR refinement protocol[J/OL]. Int J Mol Sci, 2023, 24(17): 13337 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/37686144/. DOI: 10.3390/ijms241713337.
[13]
MARASCO M, KIRKPATRICK J P, NANNA V, et al. NMR methods to study the dynamics of SH2 domain-phosphopeptide complexes[J/OL]. Methods Mol Biol, 2023, 2705: 25-37 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/37668967/. DOI: 10.1007/978-1-0716-3393-9_2.
[14]
AGUIRRE C, CALA O, KRIMM I. Overview of probing protein-ligand interactions using NMR[J/OL]. Curr Protoc Protein Sci, 2015 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/26237672/. DOI: 10.1002/0471140864.ps1718s81.
[15]
WANG Y Y, RAGAVAN M, HILTY C. Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase[J]. J Biomol NMR, 2016, 65(1): 41-48. DOI: 10.1007/s10858-016-0037-x.
[16]
MILBRADT A G, ARTHANARI H, TAKEUCHI K, et al. Increased resolution of aromatic cross peaks using alternate 13C labeling and TROSY[J]. J Biomol NMR, 2015, 62(3): 291-301. DOI: 10.1007/s10858-015-9944-5.
[17]
BRAUN D, SCHMOLLNGRUBER M, STEINHAUSER O. Revival of the intermolecular nuclear overhauser effect for mapping local protein hydration dynamics[J]. J Phys Chem Lett, 2017, 8(14): 3421-3426. DOI: 10.1021/acs.jpclett.7b01013.
[18]
VÖGELI B, SEGAWA T F, LEITZ D, et al. Exact distances and internal dynamics of perdeuterated ubiquitin from NOE buildups[J]. J Am Chem Soc, 2009, 131(47): 17215-17225. DOI: 10.1021/ja905366h.
[19]
KHARCHENKO V, NOWAKOWSKI M, JAREMKO M, et al. Dynamic 15N{1H}NOE measurements: a tool for studying protein dynamics[J]. J Biomol NMR, 2020, 74(12): 707-716. DOI: 10.1007/s10858-020-00346-6.
[20]
JABAR S, ADAMS L A, WANG Y, et al. Chemical tagging with tert-butyl and trimethylsilyl groups for measuring intermolecular nuclear overhauser effects in a large protein-ligand complex[J]. Chemistry, 2017, 23(53): 13033-13036. DOI: 10.1002/chem.201703531.
[21]
NICHOLS P J, BORN A, HENEN M A, et al. The exact nuclear overhauser enhancement: recent advances[J/OL]. Molecules, 2017, 22(7): 1176 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/28708092/. DOI: 10.3390/molecules22071176.
[22]
HEINEMANN U, ROSKE Y. Symmetry in nucleic-acid double helices[J/OL]. Symmetry, 2020, 12(5): 737 [2024-06-24]. https://www.mdpi.com/2073-8994/12/5/737. DOI: 10.3390/sym12050737.
[23]
NAKANO S I, MIYOSHI D, SUGIMOTO N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids[J]. Chem Rev, 2014, 114(5): 2733-2758. DOI: 10.1021/cr400113m.
[24]
ALBA J J, SADURNÍ A, GARGALLO R. Nucleic acid i-motif structures in analytical chemistry[J]. Crit Rev Anal Chem, 2016, 46(5): 443-454. DOI: 10.1080/10408347.2016.1143347.
[25]
LASKOWSKI T, CZUB J, SOWIŃSKI P, et al. Intercalation complex of imidazoacridinone C-1311, a potential anticancer drug, with DNA helix d(CGATCG)2: stereostructural studies by 2D NMR spectroscopy[J]. J Biomol Struct Dyn, 2016, 34(3): 653-663. DOI: 10.1080/07391102.2015.1049552.
[26]
TAKAHASHI S, SUGIMOTO N. Watson-crick versus hoogsteen base pairs: chemical strategy to encode and express genetic information in life[J]. Acc Chem Res, 2021, 54(9): 2110-2120. DOI: 10.1021/acs.accounts.0c00734.
[27]
CHEN R X F, REIDYS C M, WATERMAN M S. RNA secondary structures with given motif specification: combinatorics and algorithms[J/OL]. Bull Math Biol, 2023, 85(3): 21 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/36780044/. DOI: 10.1007/s11538-023-01128-5.
[28]
MARIAPPAN S V, GARCOA A E, GUPTA G. Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy[J]. Nucleic Acids Res, 1996, 24(4): 775-783. DOI: 10.1093/nar/24.4.775.
[29]
ADAMIAK R W, BLAZEWICZ J, FORMANOWICZ P, et al. An algorithm for an automatic NOE pathways analysis of 2D NMR spectra of RNA duplexes[J]. J Comput Biol, 2004, 11(1): 163-179. DOI: 10.1089/106652704773416948.
[30]
EMWAS A H, SZCZEPSKI K, POULSON B G, et al. NMR as a "gold standard" method in drug design and discovery[J/OL]. Molecules, 2020, 25(20): 4597 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/33050240/. DOI: 10.3390/molecules25204597.
[31]
GAROFALO M, GRAZIOSO G, CAVALLI A, et al. How computational chemistry and drug delivery techniques can support the development of new anticancer drugs[J/OL]. Molecules, 2020, 25(7): 1756 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/32290224/. DOI: 10.3390/molecules25071756.
[32]
REDDY R R, SUBRAMANIAN J, PHANI KUMAR B V N. NMR studies on the interaction of anticancer drug doxorubicin with membrane mimetic SDS[J]. J Phys Chem B, 2022, 126(48): 10237-10248. DOI: 10.1021/acs.jpcb.2c05909.
[33]
PUTHENVEETIL R, VINOGRADOVA O. Solution NMR: a powerful tool for structural and functional studies of membrane proteins in reconstituted environments[J]. J Biol Chem, 2019, 294(44): 15914-15931. DOI: 10.1074/jbc.REV119.009178.
[34]
KIM C S, OH J, LEE T H. Structure elucidation of small organic molecules by contemporary computational chemistry methods[J]. Arch Pharm Res, 2020, 43(11): 1114-1127. DOI: 10.1007/s12272-020-01277-4.
[35]
JIANG M J, LI Z, BIAN Y J, et al. A novel protein descriptor for the prediction of drug binding sites[J/OL]. BMC Bioinformatics, 2019, 20(1): 478 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/31533611/. DOI: 10.1186/s12859-019-3058-0.
[36]
WANG S Z, KRUMMENACHER K, LANDRUM G A, et al. Incorporating NOE-derived distances in conformer generation of cyclic peptides with distance geometry[J]. J Chem Inf Model, 2022, 62(3): 472-485. DOI: 10.1021/acs.jcim.1c01165.
[37]
SUGIKI T, KOBAYASHI N, FUJIWARA T. Modern technologies of solution nuclear magnetic resonance spectroscopy for three-dimensional structure determination of proteins open avenues for life scientists[J/OL]. Comput Struct Biotechnol J, 2017, 15: 328-339 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/28487762/. DOI: 10.1016/j.csbj.2017.04.001.
[38]
TALEVI A. Computer-aided drug discovery and design: recent advances and future prospects[J/OL]. Methods Mol Biol, 2024, 2714: 1-20 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/37676590/. DOI: 10.1007/978-1-0716-3441-7_1.
[39]
PINZI L C, RASTELLI G. Molecular docking: shifting paradigms in drug discovery[J/OL]. Int J Mol Sci, 2019, 20(18): 4331 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/31487867/. DOI: 10.3390/ijms20184331.
[40]
SAAR K L, MCCORKINDALE W, FEARON D, et al. Turning high-throughput structural biology into predictive inhibitor design[J/OL]. Proc Natl Acad Sci USA, 2023, 120(11): e2214168120 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/36877844/. DOI: 10.1073/pnas.2214168120.
[41]
SOFTLEY C A, BOSTOCK M J, POPOWICZ G M, et al. Paramagnetic NMR in drug discovery[J]. J Biomol NMR, 2020, 74(6/7): 287-309. DOI: 10.1007/s10858-020-00322-0
[42]
LU X Y, LI M Y, ARCE F A, et al. Mechanistic investigation of drug supersaturation in the presence of polysorbates as solubilizing additives by solution nuclear magnetic resonance spectroscopy[J]. Mol Pharm, 2021, 18(12): 4310-4321. DOI: 10.1021/acs.molpharmaceut.1c00477.
[43]
SILLÉ F, HARTUNG T. Metabolomics in preclinical drug safety assessment: current status and future trends[J/OL]. Metabolites, 2024, 14(2): 98 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/38392990/. DOI: 10.3390/metabo14020098.
[44]
MEYER B, WEIMAR T, PETERS T. Screening mixtures for biological activity by NMR[J]. Eur J Biochem, 1997, 246(3): 705-709. DOI: 10.1111/j.1432-1033.1997.t01-1-00705.x.
[45]
HUANG X, MOY F, POWERS R. Evaluation of the utility of NMR structures determined from minimal NOE-based restraints for structure-based drug design, using MMP-1 as an example[J]. Biochemistry, 2000, 39(44): 13365-13375. DOI: 10.1021/bi001658s.
[46]
DAS S, DEY M K, DEVIREDDY R, et al. Biomarkers in cancer detection, diagnosis, and prognosis[J/OL]. Sensors, 2023, 24(1): 37 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/38202898/. DOI: 10.3390/s24010037.
[47]
CUI J, SUN C, ZU Z L. NOE-weighted imaging in tumors using low-duty-cycle 2π-CEST[J]. Magn Reson Med, 2023, 89(2): 636-651. DOI: 10.1002/mrm.29475.
[48]
FENG Z, WU J, LU Y, et al. Circulating tumor cells in the early detection of human cancers[J]. Int J Biol Sci, 2022, 18(8): 3251-3265. DOI: 10.7150/ijbs.71768.
[49]
YI Z J, QU C R, ZENG Y, et al. Liquid biopsy: early and accurate diagnosis of brain tumor[J]. J Cancer Res Clin Oncol, 2022, 148(9): 2347-2373. DOI: 10.1007/s00432-022-04011-3.
[50]
JONES C K, HUANG A L, XU J D, et al. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T[J/OL]. Neuroimage, 2013, 77: 114-124 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/23567889/. DOI: 10.1016/j.neuroimage.2013.03.047.
[51]
ZAISS M, WINDSCHUH J, PAECH D, et al. Relaxation-compensated CEST-MRI of the human brain at7T: unbiased insight into NOE and amide signal changes in human glioblastoma[J/OL]. Neuroimage, 2015, 112: 180-188 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/25727379/. DOI: 10.1016/j.neuroimage.2015.02.040.
[52]
HEO H Y, JONES C K, HUA J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T[J]. J Magn Reson Imaging, 2016, 44(1): 41-50. DOI: 10.1002/jmri.25108.
[53]
VISWANATHAN M, KURMI Y, ZU Z L. Nuclear Overhauser enhancement imaging at-1.6 ppm in rat brain at 4.7T[J]. Magn Reson Med, 2024, 91(2): 615-629. DOI: 10.1002/mrm.29896.
[54]
AGUILAR DÍAZ DE LEÓN J S, THIRUMURTY M, LY N. Surface plasmon resonance microscopy identifies glycan heterogeneity in pancreatic cancer cells that influences mucin-4 binding interactions[J/OL]. PLoS One, 2024, 19(5): e0304154 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/38776309/. DOI: 10.1371/journal.pone.0304154.
[55]
GAO C F, WISNIEWSKI L, LIU Y, et al. Detection of chemotherapy-resistant pancreatic cancer using a glycan biomarker, sTRA[J]. Clin Cancer Res, 2021, 27(1): 226-236. DOI: 10.1158/1078-0432.CCR-20-2475.
[56]
CHANDRA A, DERVENOULAS G, POLITIS M, et al. Magnetic resonance imaging in Alzheimer's disease and mild cognitive impairment[J]. J Neurol, 2019, 266(6): 1293-1302. DOI: 10.1007/s00415-018-9016-3.
[57]
STICHT H, BAYER P, WILLBOLD D, et al. Structure of amyloid A4-(1-40)-peptide of Alzheimer's disease[J]. Eur J Biochem, 1995, 233(1): 293-298. DOI: 10.1111/j.1432-1033.1995.293_1.x.
[58]
SWAIN A, SONI N D, WILSON N, et al. Early-stage mapping of macromolecular content in APPNL-F mouse model of Alzheimer's disease using nuclear Overhauser effect MRI[J/OL]. Front Aging Neurosci, 2023, 15: 1266859 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/37876875/. DOI: 10.3389/fnagi.2023.1266859.
[59]
SAYYAED A, SARASWAT N, VYAWAHARE N, et al. A detailed review of pathophysiology, epidemiology, cellular and molecular pathways involved in the development and prognosis of Parkinson's disease with insights into screening models[J/OL]. Bull Natl Res Cent, 2023, 47(1): 70 [2024-06-24]. https://bnrc.springeropen.com/articles/10.1186/s42269-023-01047-4. DOI: 10.1186/s42269-023-01047-4.
[60]
SHIN S H, WENDLAND M F, WANG J S, et al. Noninvasively differentiating acute and chronic nephropathies via multiparametric urea-CEST, nuclear Overhauser enhancement-CEST, and quantitative magnetization transfer MRI[J]. Magn Reson Med, 2023, 89(2): 774-786. DOI: 10.1002/mrm.29477.
[61]
SHENG L J, YUAN E Y, YUAN F, et al. Amide proton transfer-weighted imaging of the abdomen: current progress and future directions[J/OL]. Magn Reson Imaging, 2024, 107: 88-99 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/38242255/. DOI: 10.1016/j.mri.2024.01.006.
[62]
CHAN R W, LAWRENCE L S P, OGLESBY R T, et al. Chemical exchange saturation transfer MRI in central nervous system tumours on a 1.5T MR-Linac[J/OL]. Radiother Oncol, 2021, 162: 140-149 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/34280403/. DOI: 10.1016/j.radonc.2021.07.010.
[63]
MU C Q, REED J L, WANG F, et al. Spatiotemporal dynamics of neuroinflammation relate to behavioral recovery in rats with spinal cord injury[J]. Mol Imaging Biol, 2024, 26(2): 240-252. DOI: 10.1007/s11307-023-01875-w.
[64]
LIU Z H, BIAN B Y, WANG G, et al. Evaluation of microstructural changes in spinal cord of patients with degenerative cervical myelopathy by diffusion kurtosis imaging and investigate the correlation with JOA score[J/OL]. BMC Neurol, 2020, 20(1): 185 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/32404188/. DOI: 10.1186/s12883-020-01752-x.
[65]
WANG F, ZU Z L, WU T L, et al. Sensitivity and specificity of CEST and NOE MRI in injured spinal cord in monkeys[J/OL]. Neuroimage Clin, 2021, 30: 102633 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/33780866/. DOI: 10.1016/j.nicl.2021.102633.
[66]
OMAR R F, BOISSINOT M, HULETSKY A, et al. Tackling infectious diseases with rapid molecular diagnosis and innovative prevention[J]. Infect Dis Rep, 2024, 16(2): 216-227. DOI: 10.3390/idr16020017.
[67]
VERWEIJ J J. Application of PCR-based methods for diagnosis of intestinal parasitic infections in the clinical laboratory[J]. Parasitology, 2014, 141(14): 1863-1872. DOI: 10.1017/S0031182014000419.
[68]
CHEN J W, ALMO S C, WU Y H. General principles of binding between cell surface receptors and multi-specific ligands: a computational study[J/OL]. PLoS Comput Biol, 2017, 13(10): e1005805 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/29016600/. DOI: 10.1371/journal.pcbi.1005805.
[69]
SCAHILL T A, JENSEN R M, SWENSON D H, et al. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA[J]. Biochemistry, 1990, 29(11): 2852-2860. DOI: 10.1021/bi00463a031.
[70]
GRAVES D E, STONE M P, KRUGH T R. Structure of the anthramycin-d(ATGCAT)2 adduct from one- and two-dimensional proton NMR experiments in solution[J]. Biochemistry, 1985, 24(26): 7573-7581. DOI: 10.1021/bi00347a011.
[71]
LIN J G, XIA L Z, LIANG J X, et al. The roles of glucose metabolic reprogramming in chemo- and radio-resistance[J/OL]. J Exp Clin Cancer Res, 2019, 38(1): 218 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/31122265/. DOI: 10.1186/s13046-019-1214-z.
[72]
CHIN N A, WIDERA E, BRANGMAN S A, et al. Monoclonal anti-amyloid antibodies for the treatment of Alzheimer's disease and the hesitant geriatrician[J]. J Am Geriatr Soc, 2024, 72(2): 643-645. DOI: 10.1111/jgs.18652.
[73]
COGSWELL P M, BARAKOS J A, BARKHOF F, et al. Amyloid-related imaging abnormalities with emerging alzheimer disease therapeutics: detection and reporting recommendations for clinical practice[J/OL]. AJNR Am J Neuroradiol, 2022, 43(9): E19-E35 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/35953274/. DOI: 10.3174/ajnr.A7586.
[74]
HAIDER A, ELGHAZAWY N H, DAWOUD A, et al. Translational molecular imaging and drug development in Parkinson's disease[J/OL]. Mol Neurodegener, 2023, 18(1): 11 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/36759912/. DOI: 10.1186/s13024-023-00600-z.
[75]
MASATO A, PLOTEGHER N, BOASSA D, et al. Impaired dopamine metabolism in Parkinson's disease pathogenesis[J/OL]. Mol Neurodegener, 2019, 14(1): 35 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/31488222/. DOI: 10.1186/s13024-019-0332-6.
[76]
ZHOU J X, CAI Y, LIU Y, et al. Breaking down the cell wall: still an attractive antibacterial strategy[J/OL]. Front Microbiol, 2022, 13: 952633 [2024-06-24]. https://pubmed.ncbi.nlm.nih.gov/36212892/. DOI: 10.3389/fmicb.2022.952633.
[77]
TOUNTA V, LIU Y, CHEYNE A, et al. Metabolomics in infectious diseases and drug discovery[J]. Mol Omics, 2021, 17(3): 376-393. DOI: 10.1039/d1mo00017a.

PREV Current status and reseach progress of MRI diagnosis of endometriosis malignancy related to ovarian cancer
NEXT
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn