Share:
Share this content in WeChat
X
Special Focus
Clinical application advantages, challenges, and future prospects of 7 T MRI
LIU Chen  WANG Jian 

Cite this article as: LIU C, WANG J. Clinical application advantages, challenges, and future prospects of 7 T MRI[J]. Chin J Magn Reson Imaging, 2024, 15(12): 38-41, 47. DOI:10.12015/issn.1674-8034.2024.12.005.


[Abstract] 7 T magnetic resonance imaging (7 T MRI), as a prominent representative of ultrahigh field magnetic resonance imaging (UHF-MRI), offers superior signal-to-noise ratio (SNR) and spatial resolution, providing unique advantages in the research and clinical applications across neurological, cardiovascular, musculoskeletal, and other systems. Significant progress has been made in high-resolution structural imaging, susceptibility-weighted imaging (SWI), multinuclear imaging and spectroscopy, and ultramicrovascular visualization, facilitating the diagnosis and study of neurodegenerative diseases, tumors, cardiac diseases, and joint disorders. However, challenges such as RF field inhomogeneity, specific absorption rate (SAR) limitations, and imaging artifacts persist. This review summarizes the core advantages of 7 T MRI, its application progress in specific systems, analyzes the challenges in clinical applications, and discusses future research directions, including artificial intelligence-assisted image processing and the establishment of clinical application standards and consensus guidelines, aiming to provide references for clinicians and radiologists, and to promote the standardized application and development of 7 T MRI.
[Keywords] 7 T magnetic resonance imaging;ultra-high-field magnetic resonance imaging;neurological system;cardiovascular system;musculoskeletal system;artificial intelligence;clinical application standards

LIU Chen1, 2   WANG Jian1, 2*  

1 7 T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

2 Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

Corresponding author: WANG J, E-mail: wangjian@tmmu.edu.cn

Conflicts of interest   None.

Received  2024-10-30
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.005
Cite this article as: LIU C, WANG J. Clinical application advantages, challenges, and future prospects of 7 T MRI[J]. Chin J Magn Reson Imaging, 2024, 15(12): 38-41, 47. DOI:10.12015/issn.1674-8034.2024.12.005.

[1]
SUI B B, SANNANANJA B, ZHU C C, et al. Report from the society of magnetic resonance angiography: clinical applications of 7T neurovascular MR in the assessment of intracranial vascular disease[J]. J Neurointerv Surg, 2024, 16(8): 846-851. DOI: 10.1136/jnis-2023-020668.
[2]
PERERA MOLLIGODA ARACHCHIGE A S, GARNER A K. Seven Tesla MRI in Alzheimer's disease research: state of the art and future directions: a narrative review[J]. AIMS Neurosci, 2023, 10(4): 401-422. DOI: 10.3934/Neuroscience.2023030.
[3]
MARTINOVIĆ J, MATIJAŠ T. 7versusT MRI 3T MRI in brain diseases diagnosis[J/OL]. Radiološki vjesnik, 2023 [2024-10-17]. https://hrcak.srce.hr/clanak/446466. DOI: 10.55378/rv.47.2.4.
[4]
KIM J M, JEONG H J, BAE Y J, et al. Loss of substantia nigra hyperintensity on 7 Tesla MRI of Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy[J/OL]. Parkinsonism Relat Disord, 2016, 26: 47-54 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/26951846/. DOI: 10.1016/j.parkreldis.2016.01.023.
[5]
REGATTE R R, SCHWEITZER M E. Ultra-high-field MRI of the musculoskeletal system at 7.0T[J]. J Magn Reson Imaging, 2007, 25(2): 262-269. DOI: 10.1002/jmri.20814.
[6]
KWAN B Y M, SALEHI F, OHORODNYK P, et al. Usage of SWI (susceptibility weighted imaging) acquired at 7T for qualitative evaluation of temporal lobe epilepsy patients with histopathological and clinical correlation: an initial pilot study[J/OL]. J Neurol Sci, 2016, 369: 82-87 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/27653870/. DOI: 10.1016/j.jns.2016.07.066.
[7]
JEON B U, YU I K, KIM T K, et al. Susceptibility-weighted imaging as a distinctive imaging technique for providing complementary information for precise diagnosis of neurologic disorder[J]. Taehan Yongsang Uihakhoe Chi, 2021, 82(1): 99-115. DOI: 10.3348/jksr.2020.0054.
[8]
LUPO J M, CHUANG C F, CHANG S M, et al. 7-Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma[J/OL]. Int J Radiat Oncol Biol Phys, 2012, 82(3): e493-e500 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/22000750/. DOI: 10.1016/j.ijrobp.2011.05.046.
[9]
POLIMENI J R, ULUDAĞ K. Neuroimaging with ultra-high field MRI: present and future[J/OL]. NeuroImage, 2018, 168: 1-6 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/29410013/. DOI: 10.1016/j.neuroimage.2018.01.072.
[10]
SUN W B, XU D, YANG Y X, et al. Improved detection of target metabolites in brain tumors with intermediate TE, high SNR, and high bandwidth spin-echo sequence at 5T[J]. AJNR Am J Neuroradiol, 2024, 45(4): 461-467. DOI: 10.3174/ajnr.A8150.
[11]
PRENER M, OPHEIM G, SHAMS Z, et al. Single-voxel MR spectroscopy of gliomas with s-LASER at 7T[J/OL]. Diagnostics, 2023, 13(10): 1805 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/37238288/. DOI: 10.3390/diagnostics13101805.
[12]
GOLDENBERG J M, PAGEL M D. Assessments of tumor metabolism with CEST MRI[J/OL]. NMR Biomed, 2019, 32(10): e3943 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/29938857/. DOI: 10.1002/nbm.3943.
[13]
HUANG Z W, EMIR U, DORING A, et al. Rosette spectroscopic imaging for whole-brain metabolite mapping at7T: acceleration potential and reproducibility[EB/OL]. 2024: arXiv: 2410.05245. http://arxiv.org/abs/2410.05245
[14]
GURSAN A, HENDRIKS A D, WELTING D, et al. Deuterium body array for the simultaneous measurement of hepatic and renal glucose metabolism and gastric emptying with dynamic 3D deuterium metabolic imaging at 7 T[J/OL]. NMR Biomed, 2023, 36(8): e4926 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/36929629/. DOI: 10.1002/nbm.4926.
[15]
AHMADIAN N, KONIG M M, OTTO S, et al. Human brain deuterium metabolic imaging at 7 T: impact of different [6, 6'-2H2]glucose doses[J/OL]. J Magn Reson Imaging, 2024 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/39058248/. DOI: 10.1002/jmri.29532.
[16]
RUTLAND J W, DELMAN B N, GILL C M, et al. Emerging use of ultra-high-field 7T MRI in the study of intracranial vascularity: state of the field and future directions[J]. AJNR Am J Neuroradiol, 2020, 41(1): 2-9. DOI: 10.3174/ajnr.A6344.
[17]
DREVAL M V, MAZUR A S, ASLANOVA G K, et al. Dynamic contrast enhancement and wall enhancement index for the quantitative assessment of vascular wall abnormalities in intracranial atherosclerosis: a pilot study[J]. Alm Clin Med, 2024, 52(2): 85-94. DOI: 10.18786/2072-0505-2024-52-014.
[18]
GOEBEL J, ROEDER E, PERRIER A, et al. Evaluation of bio-integration of rat knee cartilage repair using in vivo MRI at 7T[J/OL]. Nouvelles Méthodologies En Imagerie Du Vivant, 2012 [2024-10-17]. https://hal.science/hal-00829530.
[19]
COLLINS C M, SMITH M B. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of "90 degrees" RF pulse for the head in the birdcage coil[J]. Magn Reson Med, 2001, 45(4): 684-691. DOI: 10.1002/mrm.1091.
[20]
KARAMAT M I, DARVISH-MOLLA S, SANTOS-DIAZ A. Opportunities and challenges of 7 tesla magnetic resonance imaging: a review[J]. Crit Rev Biomed Eng, 2016, 44(1/2): 73-89. DOI: 10.1615/CritRevBiomedEng.2016016365.
[21]
ERTURK M A, LI X F, VAN DE MOORTELE P F, et al. Evolution of UHF body imaging in the human torso at 7T: technology, applications, and future directions[J]. Top Magn Reson Imaging, 2019, 28(3): 101-124. DOI: .
[22]
JACOBS P S, BENYARD B, CEMBER A, et al. Repeatability of B1+ inhomogeneity correction of volumetric (3D) glutamate CEST via High-permittivity dielectric padding at 7T[J]. Magn Reson Med, 2022, 88(6): 2475-2484. DOI: .
[23]
BALCHANDANI P, NAIDICH T P. Ultra-high-field MR neuroimaging[J]. AJNR Am J Neuroradiol, 2015, 36(7): 1204-1215. DOI: .
[24]
KRAFF O, QUICK H H. 7T: physics, safety, and potential clinical applications[J]. J Magn Reson Imaging, 2017, 46(6): 1573-1589. DOI: 10.1002/jmri.25723.
[25]
PENDSE M, STARA R, MEHDI KHALIGHI M, et al. IMPULSE: a scalable algorithm for design of minimum specific absorption rate parallel transmit RF pulses[J]. Magn Reson Med, 2019, 81(4): 2808-2822. DOI: 10.1002/mrm.27589.
[26]
YETISIR F, POSER B A, GRANT P E, et al. Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control[J/OL]. Magn Reson Imaging, 2022, 93: 87-96 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/35940379/. DOI: 10.1016/j.mri.2022.08.006.
[27]
SEGINER A, FURMAN-HARAN E, GOLDBERG I, et al. Reducing SAR in 7T brain fMRI by circumventing fat suppression while removing the lipid signal through a parallel acquisition approach[J/OL]. Sci Rep, 2021, 11(1): 15371 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/34321529/. DOI: 10.1038/s41598-021-94692-6.
[28]
CHU C, SANTINI T, LIOU J J, et al. Brain morphometrics correlations with age among 352 participants imaged with both 3T and 7T MRI: 7T improves statistical power and reduces required sample size[J/OL]. medRxiv, 2024: 2024.10.28.24316292 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/39574870/. DOI: 10.1101/2024.10.28.24316292.
[29]
CRAMER J, IKUTA I, ZHOU Y X. How to implement clinical 7T MRI—practical considerations and experience with ultra-high-field MRI[J/OL]. Bioengineering, 2024, 11(12): 1228 [2024-10-17]. https://www.mdpi.com/2306-5354/11/12/1228. DOI: 10.3390/bioengineering11121228.
[30]
WALLACE T E, KOBER T, STOCKMANN J P, et al. Real-time shimming with FID navigators[J]. Magn Reson Med, 2022, 88(6): 2548-2563. DOI: 10.1002/mrm.29421.
[31]
ZHOU Z J, HU P, QI H K. Stop moving: MR motion correction as an opportunity for artificial intelligence[J]. Magma, 2024, 37(3): 397-409. DOI: 10.1007/s10334-023-01144-5.
[32]
DUONG S T M, PHUNG S L, BOUZERDOUM A, et al. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images[J/OL]. Magn Reson Imaging, 2020, 71: 1-10 [2024-10-19]. https://pubmed.ncbi.nlm.nih.gov/32407764// DOI: 10.1016/j.mri.2020.04.004.
[33]
CUI Q M, TOSUN D, MUKHERJEE P, et al. 7T MRI synthesization from 3T acquisitions[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2024: 35-44. DOI: 10.1007/978-3-031-72104-5_4
[34]
EIDEX Z, WANG J, SAFARI M, et al. High-resolution 3T to 7T ADC map synthesis with a hybrid CNN-transformer model[J]. Med Phys, 2024, 51(6): 4380-4388. DOI: 10.1002/mp.17079.
[35]
DUAN C H, BIAN X B, CHENG K, et al. Synthesized 7T MPRAGE from 3T MPRAGE using generative adversarial network and validation in clinical brain imaging: a feasibility study[J]. J Magn Reson Imaging, 2024, 59(5): 1620-1629. DOI: 10.1002/jmri.28944.
[36]
CLARKE W T, MOUGIN O, DRIVER I D, et al. Multi-site harmonization of 7 tesla MRI neuroimaging protocols[J/OL]. Neuroimage, 2020, 206: 116335 [2024-10-19]. https://pubmed.ncbi.nlm.nih.gov/31712167/. DOI: 10.1016/j.neuroimage.2019.116335.
[37]
OPHEIM G, VAN DER KOLK A, MARKENROTH BLOCH K, et al. 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice[J]. Neurology, 2021, 96(7): 327-341. DOI: 10.1212/WNL.0000000000011413.

PREV Chinese expert consensus on the evaluation of abdominal immune-related adverse reactions in malignant tumors treated with immune checkpoint inhibitors by MRI
NEXT Assessment of middle cerebral artery atherosclerotic stenosis by 7.0 T MR HR-VWI: A consistency analysis with DSA
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn