Share:
Share this content in WeChat
X
Special Focus
Assessment of middle cerebral artery atherosclerotic stenosis by 7.0 T MR HR-VWI: A consistency analysis with DSA
HE Min  DENG Yali  LI Chuan  ZHEN Zhiming  ZUO Meng  WANG Jian  CHEN Wei  CHEN Wei  CHEN Jiafei 

Cite this article as: HE M, DENG Y L, LI C, et al. Assessment of middle cerebral artery atherosclerotic stenosis by 7.0 T MR HR-VWI: A consistency analysis with DSA[J]. Chin J Magn Reson Imaging, 2024, 15(12): 42-47. DOI:10.12015/issn.1674-8034.2024.12.006.


[Abstract] Objective To analyze the accuracy and reproducibility of 7.0 T high resolution vessel wall imaging (HR-VWI) in assessing the degree of atherosclerotic stenosis in the middle cerebral artery (MCA) patients with ischemic stroke.Materials and Methods The present study retrospectively collected data from a total of 47 patients diagnosed with atherosclerosis in the middle cerebral artery at our hospital from September 2022 to November 2023. All patients underwent 7.0 T HR-VWI and digital subtraction angiography (DSA) examinations within 2 weeks. Two senior physicians independently measured the stenosis diameter, stenosis length, inner and outer wall areas at the site of the atherosclerotic plaques in the MCA patients, and the intra-observer and inter-observer consistency was assessed using intra-class correlation coefficient (ICC). The stenotic rate and length of the MCA vessel affected by atherosclerotic plaque are measured by an experienced interventional neurologist, followed by conducting Bland-Altman analysis and correlation analysis to compare these measurements with the mean value obtained through HR-VWI.Results The mean lumen diameter at the most stenotic site was independently measured by two observers for all 47 patients [(1.19±0.49) mm]. Additionally, measurements were also taken for mean plaque length (6.12±3.06 mm), mean inner wall area [(1.88±1.11) mm2], mean outer wall area [(8.99±2.49) mm2], mean normal lumen diameter [(2.31±0.35) mm], and mean inner wall area [(4.74±1.31) mm2] as well as mean outer wall area [(10.54±2.44) mm2]. The ICC values for all measurement was greater than 0.8, and the P value was less than 0.001. In the Bland-Altman analysis of consistency between DSA and HR-VWI in measuring stenotic rate and stenotic length, a high percentage of difference values fell within the mean difference ±1.96 standard deviations: 94.74% (54/57) for stenotic rate and 96.49% (55/57) for stenotic length, with ICC values of 0.944 and 0.897, respectively. Furthermore, strong correlations were observed between the two methods regarding both stenotic rate and stenotic length (r=0.955, P<0.001; r=0.890, P<0.001).Conclusions The 7.0 T HR-VWI demonstrates excellent reproducibility and accuracy in evaluating the degree of atherosclerotic stenosis in the MCA among patients with ischemic stroke.
[Keywords] middle cerebral artery;atherosclerotic stenosis;cerebral arterial thrombosis;high resolution vessel wall imaging;magnetic resonance imaging;7.0 T;digital subtraction angiography

HE Min1   DENG Yali1   LI Chuan1   ZHEN Zhiming1   ZUO Meng2   WANG Jian1   CHEN Wei1   CHEN Wei3   CHEN Jiafei1*  

1 7 T Magnetic Resonance Translation Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

2 Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

3 MR Research Collaboration Teams, Siemens Healthineers Ltd., Guangzhou510620, China

Corresponding author: CHEN J F, E-mail: t2mu.singular@163.com

Conflicts of interest   None.

Received  2024-03-30
Accepted  2024-07-12
DOI: 10.12015/issn.1674-8034.2024.12.006
Cite this article as: HE M, DENG Y L, LI C, et al. Assessment of middle cerebral artery atherosclerotic stenosis by 7.0 T MR HR-VWI: A consistency analysis with DSA[J]. Chin J Magn Reson Imaging, 2024, 15(12): 42-47. DOI:10.12015/issn.1674-8034.2024.12.006.

[1]
BAI X, FAN P, LI Z, et al. Evaluating middle cerebral artery plaque characteristics and lenticulostriate artery morphology associated with subcortical infarctions at 7T MRI[J]. J Magn Reson Imaging, 2024, 59(3): 1045-1055. DOI: 10.1002/jmri.28839.
[2]
WOO H G, KIM H G, LEE K M, et al. Wall shear stress associated with stroke occurrence and mechanisms in middle cerebral artery atherosclerosis[J]. J Stroke, 2023, 25(1): 132-140. DOI: 10.5853/jos.2022.02754.
[3]
LENG X, HURFORD R, FENG X, et al. Intracranial arterial stenosis in Caucasian versus Chinese patients with TIA and minor stroke: two contemporaneous cohorts and a systematic review[J]. J Neurol Neurosurg Psychiatry, 2021, 92: 590-597. DOI: 10.1136/jnnp-2020-325630.
[4]
SUN X, YANG M, YU Z Q, et al. Chinese experts consensus on endovascular treatment for symptomatic intracranial atherosclerotic stenosis 2022[J]. Chin J Stroke, 2022, 17(8): 863-888. DOI: 10.3969/j.ssn.1673-5765.2022.08.013.
[5]
HURFORD R, WOLTERS F J, LI L, et al. Prevalence, predictors, and prognosis of symptomatic intracranial stenosis in patients with transient ischaemic attack or minor stroke: a population-based cohort study[J]. Lancet Neurol, 2020, 19(5): 413-421. DOI: 10.1016/S1474-4422(20)30079-X.
[6]
TEKLE W G, HASSAN A E. Intracranial atherosclerotic disease: Current concepts in medical and surgical management[J/OL]. Neurology, 2021, 97: S145-S157 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/34785613/. DOI: 10.1212/WNL.0000000000012805.
[7]
FAKIH R, VARON MILLER A, RAGHURAM A, et al. High resolution 7T MR imaging in characterizing culprit intracranial atherosclerotic plaques[J/OL]. Interv Neuroradiol, 2022, 26: 15910199221145760 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/36573263/. DOI: 10.1177/15910199221145760.
[8]
HUANG L X, WU X B, LIU Y A, et al. High-resolution magnetic resonance vessel wall imaging in ischemic stroke and carotid artery atherosclerotic stenosis: A review[J/OL]. Heliyon, 2024, 10(7): e27948 [2024-03-30]. https://doi.org/10.1016/j.heliyon.2024.e27948. DOI: 10.1016/j.heliyon.2024.e27948.
[9]
ARSLAN S, KORKMAZER B, KIZILKILIC O. Intracranial vessel wall imaging[J]. Curr Opin Rheumatol, 2021, 33(1): 41-48. DOI: 10.1097/BOR.0000000000000759.
[10]
SHEN M, GAO P, CHEN S, et al. Differences in distribution and features of carotid and middle cerebral artery plaque in patients with pial infarction and perforating artery infarction: A 3D vessel wall imaging study[J/OL]. Eur J Radiol, 2023, 167: 111045 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/37586303/. DOI: 10.1016/j.ejrad.2023.111045.
[11]
ZHAO X H, LI C, YAN F H, et al. Expert consensus on techniques and application of intracranial MR vessel wall imaging in China[J]. Chin J Radiol, 2019, 53(12): 1045-1059. DOI: 10.3760/cma.j.issn.1005-1201.2019.12.006.
[12]
ZHANG C, SHI J. 7T MRI for intracranial vessel wall lesions and its associated neurological disorders: A systematic review[J/OL]. Brain Sci, 2022, 12(5): 528 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/35624915/. DOI: 10.3390/brainsci12050528.
[13]
WU F, YU H, YANG Q. Imaging of intracranial atherosclerotic plaques using 3.0 T and 7.0 T magnetic resonance imaging-current trends and future perspectives[J]. Cardiovasc Diagn Ther, 2020, 10(4): 994-1004. DOI: 10.21037/cdt.2020.02.03.
[14]
LINDENHOLZ A, VAN DER KOLK A G, ZWANENBURG J J M, et al. The use and pitfalls of intracranial vessel wall imaging: How we do it[J]. Radiology, 2018, 286(1): 12-28. DOI: 10.1148/radiol.2017162096.
[15]
WANG Y J, ZENG J S, LI Z X, et al. Chinese guideline for the secondary prevention of ischemic stroke and transient ischemic attack 2022[J]. Chin J Neurol, 2022, 55(10): 1071-1110. DOI: 10.3760/cma.j.cn113694-20220714-00548.
[16]
YOU S H, KIM B, YANG K S, et al. Development and validation of visual grading system for stenosis in intracranial atherosclerotic disease on time-of-flight magnetic resonance angiography[J]. Eur Radiol, 2022, 32(4): 2781-2790. DOI: 10.1007/s00330-021-08319-5.
[17]
YANG W Q, HUANG B, LIU X T, et al. Reproducibility of high-resolution MRI for the middle cerebral artery plaque at 3T[J]. Eur J Radiol, 2014, 83(1): 49-55. DOI: 10.1016/j.ejrad.2013.10.003.
[18]
WAN L, ZHANG N, ZHANG L, et al. Reproducibility of simultaneous imaging of intracranial and extracranial arterial vessel walls using an improved T1-weighted DANTE-SPACE sequence on a 3 T MR system[J]. Magn Reson Imaging, 2019, 62: 152-158. DOI: 10.1016/j.mri.2019.04.016.
[19]
ZHANG X, ZHU C, PENG W, et al. Scan-rescan reproducibility of high resolution magnetic resonance imaging of atherosclerotic plaque in the middle cerebral artery[J/OL]. PLoS One, 2015, 10(8): e0134913 [2024-03-30]. https://doi.org/10.1371/journal.pone.0134913. DOI: 10.1371/journal.pone.0134913.
[20]
SONG J W, WASSERMAN B A. Vessel wall MR imaging of intracranial atherosclerosis[J]. Cardiovasc Diagn Ther, 2020, 10(4): 982-993. DOI: 10.21037/cdt-20-470.
[21]
SANNANANJA B, ZHU C, MOSSA-BASHA M. Vessel wall imaging in cryptogenic stroke[J]. Radiol Clin North Am, 2023, 61(3): 491-500. DOI: 10.1016/j.rcl.2023.01.006.
[22]
GUGGENBERGER K, KRAFFT A J, LUDWIG U, et al. Intracranial vessel wall imaging framework - Data acquisition, processing, and visualization[J]. Magn Reson Imaging, 2021, 83: 114-124. DOI: 10.1016/j.mri.2021.08.004.
[23]
COGSWELL P M, LANTS S K, DAVIS L T, et al. Vessel wall and lumen characteristics with age in healthy participants using 3T intracranial vessel wall magnetic resonance imaging[J]. J Magn Reson Imaging, 2019, 50(5): 1452-1460. DOI: 10.1002/jmri.26750.
[24]
HARTEVELD A A, VAN DER KOLK A G, VAN DER WORP H B, et al. High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T[J]. Eur Radiol, 2017, 27(4): 1585-1595. DOI: 10.1007/s00330-016-4483-3.
[25]
GOMYO M, TSUCHIYA K, YOKOYAMA K. Vessel wall imaging of intracranial arteries: Fundamentals and clinical applications[J]. Magn Reson Med Sci, 2023, 22(4): 447-458. DOI: 10.2463/mrms.rev.2021-0140.
[26]
TAKESHIGE R, OTAKE H, KAWAMORI H, et al. Progression from normal vessel wall to atherosclerotic plaque: lessons from an optical coherence tomography study with follow-up of over 5 years[J]. Heart Vessels, 2022, 37(1): 1-11. DOI: 10.1007/s00380-021-01889-w.
[27]
ZHANG N, ZHANG F, DENG Z, et al. 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 39 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/29898736/. DOI: 10.1186/s12968-018-0453-z.
[28]
EISENMENGER L B, SPAHIC A, MCNALLY J S, et al. MR imaging for intracranial vessel wall imaging: Pearls and pitfalls[J]. Magn Reson Imaging Clin N Am, 2023, 31(3): 461-474. DOI: 10.1016/j.mric.2023.04.006.
[29]
ZWARTBOL M, VAN DER KOLK A G, GHAZNAWI R, et al. Intracranial vessel wall lesions on 7 T MRI (magnetic resonance imaging)[J]. Stroke, 2019, 50(1): 88-94. DOI: 10.1161/STROKEAHA.118.022-509.
[30]
GUTIERREZ J, ELKIND M S, PETITO C, et al. The contribution of HIV infection to intracranial arterial remodeling: a pilot study[J]. Neuropathology, 2013, 33(3): 256-263. DOI: 10.1111/j.1440-1789.2012.01358.x.
[31]
QURESHI A I, CAPLAN L R. Intracranial atherosclerosis[J]. Lancet, 2014, 383(9921): 984-998. DOI: 10.1016/S0140-6736(13)61088-0.
[32]
CHARLES J H, DESAI S, JEAN PAUL A, et al. Multimodal imaging approach for the diagnosis of intracranial atherosclerotic disease (ICAD): Basic principles, current and future perspectives[J]. Interv Neuroradiol, 2024, 30(1): 105-119. DOI: 10.1177/15910199221133170.
[33]
GONG Y, CAO C, GUO Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA[J]. Eur Radiol, 2021, 31(8): 5479-5489. DOI: 10.1007/s00330-021-07719-x.
[34]
CHEN S Y, TIAN X, WANG Z, et al. 3D IVWI versus DSA in evaluating atherosclerotic stenosis of intracranial artery:A comparative study[J]. Chinese Computed Medical Imaging, 2021, 27(4): 275-279. DOI: 10.19627/j.cnki.cn31-1700/th.2021.04.001.
[35]
ZHAO H, WANG J, LIU X, et al. Assessment of carotid artery atherosclerotic disease by using three-dimensional fast black-blood MR imaging: comparison with DSA[J]. Radiology, 2015, 274: 508-516. DOI: 10.1148/radiol.14132687.
[36]
SHARMA U, VERMA S, ADITHAN S. Morphology of middle cerebral artery using computed tomography angiographic study in a tertiary care hospital[J]. Anat Cell Biol, 2023, 56(3): 360-366. DOI: 10.5115/acb.22.242.
[37]
SPINCEMAILLE P, ANDERSON J, WU G, et al. Quantitative susceptibility mapping: MRI at 7T versus 3T[J]. J Neuroimaging, 2020, 30(1): 65-75. DOI: 10.1111/jon.12669.

PREV Clinical application advantages, challenges, and future prospects of 7 T MRI
NEXT Evaluation of the display ability of 7.0 T magnetic resonance SWI sequence for knee bone microstructure using U-HRCT as a standard
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn