Share:
Share this content in WeChat
X
Special Focus
Evaluation of the display ability of 7.0 T magnetic resonance SWI sequence for knee bone microstructure using U-HRCT as a standard
JING Guoqing  ZHEN Zhiming  CHEN Pinzhen  LI Lian  CHEN Jiafei  CHEN Wei 

Cite this article as: JING G Q, ZHEN Z M, CHEN P Z, et al. Evaluation of the display ability of 7.0 T magnetic resonance SWI sequence for knee bone microstructure using U-HRCT as a standard[J]. Chin J Magn Reson Imaging, 2024, 15(12): 48-52. DOI:10.12015/issn.1674-8034.2024.12.007.


[Abstract] Objective To investigate the ability of 7.0 T magnetic resonance magnetic susceptibility weighted imaging (SWI) sequences to assess bone microarchitecture imaging of the knee joint using ultra-high-resolution CT (U-HRCT) as a standard.Materials and Methods Analysis of 31 patients who underwent U-HRCT scanning of the knee from December 2022 to March 2023 at the First Affiliated Hospital of the Army Medical University, who underwent 7.0 T MRI knee scanning within one week. All data were processed by Siemens Syngovia, and the cortical thickness of the posterior portion of the femur was measured at the same anatomical level of the upper and lower margins of the patella in the knee U-HRCT and 7.0 T SWI sequences, respectively, and trabecular fit analyses were performed at the same anatomical level of the upper and lower margins of the patella and the tibial plateau in the knee U-HRCT and 7.0 T SWI, using the Bone J software, to assess the UHRCT as the standard SWI's ability to display bone microstructure.Results Cortical thickness of the posterior femur at the level of the superior patellar margin was significantly higher in MRI than in CT [(0.320±0.020) mm vs. (0.230±0.025) mm, t=19, P<0.001], and cortical thickness of the posterior femur at the level of the inferior patellar margin was significantly higher in MRI than in CT [(0.260±0.021) mm vs. (0.158±0.028) mm, t=21, P<0.001]. At the level of the superior patellar rim, the CT and MRI fit of the femoral trabeculae was 47%±11%, at the level of the inferior patellar rim, the CT and MRI fit of the femoral trabeculae was 53%±10%, and at the level of the superior horizontal rim of the tibial plateau epiphysis, the CT and MRI fit of the tibial trabeculae was 55%±6%.Conclusions At 7.0 T MRI, SWI was able to show the cortical thickness of the posterior portion of the femur of the knee more accurately, but there were some limitations in the display of trabecular bone structure.
[Keywords] bone microstructure;ultra-high-resolution CT;7.0 T;magnetic resonance imaging;susceptibility weighted imaging

JING Guoqing   ZHEN Zhiming   CHEN Pinzhen   LI Lian   CHEN Jiafei   CHEN Wei*  

T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

Corresponding author: CHEN W, E-mail: landcw@tmmu.edu.cn

Conflicts of interest   None.

Received  2024-04-01
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.007
Cite this article as: JING G Q, ZHEN Z M, CHEN P Z, et al. Evaluation of the display ability of 7.0 T magnetic resonance SWI sequence for knee bone microstructure using U-HRCT as a standard[J]. Chin J Magn Reson Imaging, 2024, 15(12): 48-52. DOI:10.12015/issn.1674-8034.2024.12.007.

[1]
SEBBAG E, FELTEN R, SAGEZ F, et al. The world-wide burden of musculoskeletal diseases: a systematic analysis of the World Health Organization Burden of Diseases Database[J]. Ann Rheum Dis, 2019, 78(6): 844-848. DOI: 10.1136/annrheumdis-2019-215142.
[2]
HUNTER D J, MARCH L, CHEW M. Osteoarthritis in 2020 and beyond: a lancet commission[J]. Lancet, 2020, 396(10264): 1711-1712. DOI: 10.1016/S0140-6736(20)32230-3.
[3]
HU Y, CHEN X, WANG S C, et al. Subchondral bone microenvironment in osteoarthritis and pain[J/OL]. Bone Res, 2021, 9(1): 20 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/33731688/. DOI: 10.1038/s41413-021-00147-z.
[4]
MISRA D, GUERMAZI A, SIEREN J P, et al. CT imaging for evaluation of calcium crystal deposition in the knee: initial experience from the Multicenter Osteoarthritis (MOST) study[J]. Osteoarthritis Cartilage, 2015, 23(2): 244-248. DOI: 10.1016/j.joca.2014.10.009.
[5]
HEUTINK F, KOCH V, VERBIST B, et al. Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images[J/OL]. Comput Methods Programs Biomed, 2020, 191: 105387 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/32109685/. DOI: 10.1016/j.cmpb.2020.105387.
[6]
CHANG H X, LI C X, GUAN L W. Differential diagnosis value of susceptibility weighted imaging for cerebral microhemorrhage[J]. Chin J CT MRI, 2020, 18(12): 18-21. DOI: 10.3969/j.issn.1672-5131.2020.12.007.
[7]
SHEN Y, XIE H, YUN J, et al. Application value of susceptibility-weighted imaging(SWI) in the grading of gliomas[J]. Chin J CT and MRI, 2020, 18(8): 13-15+59. DOI: 10.3969/j.issn.1672-5131.2020.08.005.
[8]
WANG E J. Application value of magnetic sensitivity weighted imaging in fetal spine imaging[D]. Changchun: Jilin University, 2020.
[9]
SOLDATI E, ROSSI F, VICENTE J, et al. Survey of MRI usefulness for the clinical assessment of bone microstructure[J/OL]. Int J Mol Sci, 2021, 22(5): 2509 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/33801539/. DOI: 10.3390/ijms22052509.
[10]
RAJAPAKSE C S, KOBE E A, BATZDORF A S, et al. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing[J]. Bone, 2018, 108: 71-78. DOI: 10.1016/j.bone.2017.12.023.
[11]
CHIBA K, UETANI M, KIDO Y, et al. Osteoporotic changes of subchondral trabecular bone in osteoarthritis of the knee: a 3-T MRI study[J]. Osteoporos Int, 2012, 23(2): 589-597. DOI: 10.1007/s00198-011-1585-2.
[12]
PLATT T, LADD M E, PAECH D. 7 tesla and beyond: advanced methods and clinical applications in magnetic resonance imaging[J]. Invest Radiol, 2021, 56(11): 705-725. DOI: 10.1097/RLI.0000000000000820.
[13]
FRIEBE B, RICHTER M, PENZLIN S, et al. Assessment of low-grade meniscal and cartilage damage of the knee at 7 T: a comparison to 3 T imaging with arthroscopic correlation[J]. Invest Radiol, 2018, 53(7): 390-396. DOI: 10.1097/RLI.0000000000000456.
[14]
NÖRENBERG D, ARMBRUSTER M, BENDER Y N, et al. Diagnostic performance of susceptibility-weighted magnetic resonance imaging for the assessment of sub-coracoacromial spurs causing subacromial impingement syndrome[J]. Eur Radiol, 2017, 27(3): 1286-1294. DOI: 10.1007/s00330-016-4441-0.
[15]
DOUBE M, KŁOSOWSKI M M, ARGANDA-CARRERAS I, et al. BoneJ: free and extensible bone image analysis in ImageJ[J]. Bone, 2010, 47(6): 1076-1079. DOI: 10.1016/j.bone.2010.08.023.
[16]
WEHRLI F W. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging[J]. J Magn Reson Imaging, 2007, 25(2): 390-409. DOI: 10.1002/jmri.20807.
[17]
KRUG R, BANERJEE S, HAN E T, et al. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur[J]. Osteoporos Int, 2005, 16(11): 1307-1314. DOI: 10.1007/s00198-005-1907-3.
[18]
WANG X R, MA L, LOU X. Application of 7.0 T MRI in clinical diagnosis and treatment[J]. The Chin J of Radio, 2020, 54(10): 1025-1028. DOI: 10.3760/cma.J.c.n112149-20191226-01005.
[19]
WELSCH G H, JURAS V, SZOMOLANYI P, et al. Magnetic resonance imaging of the knee at 3 and 7 tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols[J]. Eur Radiol, 2012, 22(9): 1852-1859. DOI: 10.1007/s00330-012-2450-1.
[20]
SPRINGER E, BOHNDORF K, JURAS V, et al. Comparison of routine knee magnetic resonance imaging at 3 T and 7 T[J]. Invest Radiol, 2017, 52(1): 42-54. DOI: 10.1097/RLI.0000000000000303.
[21]
CHANG G, HONIG S, LIU Y X, et al. 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density[J]. J Bone Miner Metab, 2015, 33(3): 285-293. DOI: 10.1007/s00774-014-0588-4.
[22]
MARTÍN-NOGUEROL T, MONTESINOS P, CASADO-VERDUGO O L, et al. Susceptibility Weighted Imaging for evaluation of musculoskeletal lesions[J/OL]. Eur J Radiol, 2021, 138: 109611 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/33677418/. DOI: 10.1016/j.ejrad.2021.109611.
[23]
DENK C, RAUSCHER A. Susceptibility weighted imaging with multiple echoes[J]. J Magn Reson Imaging, 2010, 31(1): 185-191. DOI: 10.1002/jmri.21995.
[24]
EL-KOUSSY M, SCHENK P, KIEFER C, et al. Susceptibility-weighted imaging of the brain: does gadolinium administration matter?[J]. Eur J Radiol, 2012, 81(2): 272-276. DOI: 10.1016/j.ejrad.2010.12.021.
[25]
LIU T, KHALIDOV I, ROCHEFORT L D, et al. A novel background field removal method for MRI using projection onto dipole fields (PDF)[J]. NMR Biomed, 2011, 24(9): 1129-1136. DOI: 10.1002/nbm.1670.
[26]
LI W, AVRAM A V, WU B, et al. Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping[J]. NMR Biomed, 2014, 27(2): 219-227. DOI: 10.1002/nbm.3056.
[27]
KAN H, KASAI H, ARAI N, et al. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes[J]. Magn Reson Imaging, 2016, 34(7): 1026-1033. DOI: 10.1016/j.mri.2016.04.019.
[28]
JORGE J, GRETSCH F, NAJDENOVSKA E, et al. Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T[J]. Magn Reson Med, 2020, 84(3): 1218-1234. DOI: 10.1002/mrm.28197.
[29]
HALLER S, HAACKE E M, THURNHER M M, et al. Susceptibility-weighted imaging: technical essentials and clinical neurologic applications[J]. Radiology, 2021, 299(1): 3-26. DOI: 10.1148/radiol.2021203071.
[30]
VAN HARTEN T W, HEIJMANS A, VAN ROODEN S, et al. Brain deep medullary veins on 7T MRI in dutch-type hereditary cerebral amyloid angiopathy[J]. J Alzheimers Dis, 2022, 90(1): 381-388. DOI: 10.3233/JAD-220354.
[31]
OSHIMA S, FUSHIMI Y, OKADA T, et al. Brain MRI with quantitative susceptibility mapping: relationship to CT attenuation values[J]. Radiology, 2020, 294(3): 600-609. DOI: 10.1148/radiol.2019182934.
[32]
BENDER Y Y, BÖKER S M, DIEDERICHS G, et al. MRI for the detection of calcific features of vertebral haemangioma[J/OL]. Clin Radiol, 2017, 72(8): 692.e1-692.e7 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/28330684/. DOI: 10.1016/j.crad.2017.02.018.
[33]
MENON R G, CHANG G, REGATTE R R. Musculoskeletal MR imaging applications at ultra-high (7T) field strength[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 117-127. DOI: 10.1016/j.mric.2020.09.008.
[34]
ALIZAI H, CHANG G, REGATTE R R. MR imaging of the musculoskeletal system using ultrahigh field (7T) MR imaging[J]. PET Clin, 2018, 13(4): 551-565. DOI: 10.1016/j.cpet.2018.05.008.
[35]
BÖKER S M, ADAMS L C, BENDER Y Y, et al. Evaluation of vertebral body fractures using susceptibility-weighted magnetic resonance imaging[J]. Eur Radiol, 2018, 28(5): 2228-2235. DOI: 10.1007/s00330-017-5195-z.
[36]
GUENOUN D, PITHIOUX M, SOUPLET J C, et al. Assessment of proximal femur microarchitecture using ultra-high field MRI at 7 Tesla[J]. Diagn Interv Imaging, 2020, 101(1): 45-53. DOI: 10.1016/j.diii.2019.06.013.
[37]
ARINGHIERI G, ZAMPA V, TOSETTI M. Musculoskeletal MRI at 7 T: do we need more or is it more than enough?[J/OL]. Eur Radiol Exp, 2020, 4(1): 48 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/32761480/. DOI: 10.1186/s41747-020-00174-1.
[38]
SOLLMANN N, LÖFFLER M T, KRONTHALER S, et al. MRI-based quantitative osteoporosis imaging at the spine and femur[J]. J Magn Reson Imaging, 2021, 54(1): 12-35. DOI: 10.1002/jmri.27260.
[39]
MACKAY J W, MURRAY P J, KASMAI B, et al. Subchondral bone in osteoarthritis: association between MRI texture analysis and histomorphometry[J]. Osteoarthritis Cartilage, 2017, 25(5): 700-707. DOI: 10.1016/j.joca.2016.12.011.
[40]
ULAS S T, DIEKHOFF T, HERMANN K G A, et al. Susceptibility-weighted MR imaging to improve the specificity of erosion detection: a prospective feasibility study in hand arthritis[J]. Skeletal Radiol, 2019, 48(5): 721-728. DOI: 10.1007/s00256-018-3116-0.

PREV Assessment of middle cerebral artery atherosclerotic stenosis by 7.0 T MR HR-VWI: A consistency analysis with DSA
NEXT 7.0 T MR GluCEST imaging application value in evaluating therapeutic efficacy of model rats with depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn