Share:
Share this content in WeChat
X
Special Focus
Performance study of high dielectric constant materials to improve the effectiveness of 7.0 T MRI cerebellar imaging
ZHEN Zhiming  YI Xiaoqi  ZHANG Xiaotong  CHEN Wei  WANG Jian  LIU Chen 

Cite this article as: ZHEN Z M, YI X Q, ZHANG X T, et al. Performance study of high dielectric constant materials to improve the effectiveness of 7.0 T MRI cerebellar imaging[J]. Chin J Magn Reson Imaging, 2024, 15(12): 60-64, 86. DOI:10.12015/issn.1674-8034.2024.12.009.


[Abstract] Objective To evaluate the efficacy of high dielectric constant (HDC) materials in improving the quality of 7.0 T MRI in cerebellar.Materials and Methods Ten subjects were scanned using 7.0 T MRI, and firstly the HDC pad was placed on the occiput of each subject for B1 map, T2WI-turbo spin echo (T2WI-TSE), T1-mprage, and diffusion weighted imaging (DWI) sequence scanning. Then, the HDC pad was removed, and the above sequence scanning protocols were repeated. Comparisons were made between the results of using and not using HDC pad. To assess the quality of brain and cerebellar images of the same individual in two experiments, the Likert 5-point scale method was analyzed subjectively and changes in image signal-to-noise ratio (SNR) was quantified objectively.Results Ten subjects [five males, 27-34 (30.60±2.58) years oid; five females, 26-32 (29.20±2.99) years old] were recruited in the present study. In cerebellar regions, the Likert 5 scores of T2WI-TSE and DWI sequences of the HDC pad group were better than the control group (P<0.05). In the objective assessment, the SNR of images acquired with B1 map and T2WI-TSE sequences were better than the control group (P<0.05). In brain regions, there were no statistical differences in the subjective and objective assessments of B1 map, T2WI-TSE, T1-mprage and DWI sequences (P>0.05).Conclusions Applying the HDC pad in 7.0 T MRI can enhance the imaging quality of cerebellar regions without affecting the original image quality of the brain. It provides new opportunities for ultra-high field cerebellar diagnosis and research, as well as providing optimized strategies for ultra-high field imaging of other anatomical regions.
[Keywords] high dielectric constant;cerebellum;ultrahigh magnetic field strengths;signal-to-noise ratio;dielectric artifact;magnetic resonance imaging;image quality

ZHEN Zhiming1, 2   YI Xiaoqi1, 2   ZHANG Xiaotong3   CHEN Wei4   WANG Jian1, 2   LIU Chen1, 2*  

1 7 T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

2 Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

3 College of Electrical Engineering, Zhejiang University, Hangzhou310027, China

4 Siemens Digital Medical Technology (Shanghai) Co., Ltd. Guangzhou Branch, Guangzhou510000, China

Corresponding author: LIU C, E-mail: liuchen@aifmri.com

Conflicts of interest   None.

Received  2023-06-27
Accepted  2023-11-27
DOI: 10.12015/issn.1674-8034.2024.12.009
Cite this article as: ZHEN Z M, YI X Q, ZHANG X T, et al. Performance study of high dielectric constant materials to improve the effectiveness of 7.0 T MRI cerebellar imaging[J]. Chin J Magn Reson Imaging, 2024, 15(12): 60-64, 86. DOI:10.12015/issn.1674-8034.2024.12.009.

[1]
SCHICK F. Whole-body MRI at high field: technical limits and clinical potential[J]. Eur Radiol, 2005, 15(5): 946-959. DOI: 10.1007/s00330-005-2678-0.
[2]
DE ZEEUW C I, LISBERGER S G, RAYMOND J L. Diversity and dynamism in the cerebellum[J]. Nat Neurosci, 2021, 24(2): 160-167. DOI: 10.1038/s41593-020-00754-9.
[3]
FASTENRATH M, SPALEK K, COYNEL D, et al. Human cerebellum and corticocerebellar connections involved in emotional memory enhancement[J/OL]. Proc Natl Acad Sci U S A, 2022, 119(41): e2204900119 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/36191198/. DOI: 10.1073/pnas.2204900119.
[4]
QUAN P, HE L S, MAO T X, et al. Cerebellum anatomy predicts individual risk-taking behavior and risk tolerance[J/OL]. Neuroimage, 2022, 254: 119148 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/35346839/. DOI: 10.1016/j.neuroimage.2022.119148.
[5]
BI J F, LIU X Y, ZHANG Z, et al. The visualization of trigeminal nerve and its adjacent vessels using ultra-high field 7 T MRI[J]. Chin J Magn Reson Imag, 2023, 14(6): 66-70, 84. DOI: 10.12015/issn.1674-8034.2023.06.010.
[6]
PLATT T, LADD M E, PAECH D. 7 tesla and beyond: advanced methods and clinical applications in magnetic resonance imaging[J]. Invest Radiol, 2021, 56(11): 705-725. DOI: 10.1097/RLI.0000000000000820.
[7]
OPHEIM G, VAN DER KOLK A, MARKENROTH BLOCH K, et al. 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice[J]. Neurology, 2021, 96(7): 327-341. DOI: 10.1212/WNL.0000000000011413.
[8]
PRIOVOULOS N, ROOS T, IPEK Ö, et al. A local multi-transmit coil combined with a high-density receive array for cerebellar fMRI at 7 T[J/OL]. NMR Biomed, 2021, 34(11): e4586 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/34231292/. DOI: 10.1002/nbm.4586.
[9]
FAGAN A J, WELKER K M, AMRAMI K K, et al. Image artifact management for clinical magnetic resonance imaging on a 7 T scanner using single-channel radiofrequency transmit mode[J]. Invest Radiol, 2019, 54(12): 781-791. DOI: .
[10]
MANOLIU A, SPINNER G, WYSS M, et al. Magnetic resonance imaging of the temporomandibular joint at 7.0 T using high-permittivity dielectric pads: a feasibility study[J]. Invest Radiol, 2015, 50(12): 843-849. DOI: .
[11]
JIANG W X, YAN C C, WANG Z G, et al. Study on the improvement of image quality of 3.0 T fetal head MR scan by high dielectric constant[J]. Chin J Radiol, 2022, 56(8): 892-897. DOI: .
[12]
KUHN F P, SPINNER G, DEL GRANDE F, et al. MR imaging of the temporomandibular joint: comparison between acquisitions at 7.0 T using dielectric pads and 3.0 T[J/OL]. Dentomaxillofac Radiol, 2017, 46(1): 20160280 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/27704872/. DOI: 10.1259/dmfr.20160280.
[13]
VAIDYA M V, LAZAR M, DENIZ C M, et al. Improved detection of fMRI activation in the cerebellum at 7T with dielectric pads extending the imaging region of a commercial head coil[J]. J Magn Reson Imaging, 2018, 48(2): 431-440. DOI: 10.1002/jmri.25936.
[14]
SHI Z, ZHAO X Y, ZHU S, et al. Time-of-flight intracranial MRA at 3 T versus 5 T versus 7 T: visualization of distal small cerebral arteries[J/OL]. Radiology, 2022, 305(3): E72 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/36409618/. DOI: 10.1148/radiol.229027.
[15]
ALKEMADE A, BAZIN P L, BALESAR R, et al. A unified 3D map of microscopic architecture and MRI of the human brain[J/OL]. Sci Adv, 2022, 8(17): eabj7892 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/35476433/. DOI: 10.1126/sciadv.abj7892.
[16]
PARK Y W, DEELCHAND D K, JOERS J M, et al. Monitoring the neurotransmitter response to glycemic changes using an advanced magnetic resonance spectroscopy protocol at 7T[J/OL]. Front Neurol, 2021, 12: 698675 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/34484102/. DOI: 10.3389/fneur.2021.698675.
[17]
LI X K, LI X N, LIU G Q, et al. Conductivity and permittivity imaging at 7.0 T[J]. China Med Eng, 2019, 27(6): 1-6. DOI: 10.19338/j.issn.1672-2019.2019.06.001.
[18]
LUNDEN L, WOLFF S, PETERS S, et al. MRI in patients with implanted active devices: how to combine safety and image quality using a limited transmission field?[J]. Eur Radiol, 2020, 30(5): 2571-2582. DOI: 10.1007/s00330-019-06599-6.
[19]
OLIVEIRA Í A F, ROOS T, DUMOULIN S O, et al. Can 7T MPRAGE match MP2RAGE for gray-white matter contrast?[J/OL]. Neuroimage, 2021, 240: 118384 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/34265419/. DOI: 10.1016/j.neuroimage.2021.118384.
[20]
GOTTFRIED T M, DEJACO D, FISCHER N, et al. Dimensions and forms of artefacts in 1.5T and 3T MRI caused by cochlear implants[J/OL]. Sci Rep, 2022, 12(1): 4884 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/35318407/. DOI: 10.1038/s41598-022-08988-2.
[21]
ROSA F L, YU T, BARQUERO G, et al. MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients[J/OL]. Comput Biol Med, 2021, 132: 104297 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/33711559/. DOI: 10.1016/j.compbiomed.2021.104297.
[22]
GIRAUDO C, MOTYKA S, WEBER M, et al. Diffusion tensor imaging of healthy skeletal muscles: a comparison between 7 T and 3 T[J]. Invest Radiol, 2019, 54(1): 48-54. DOI: 10.1097/RLI.0000000000000508.
[23]
GALLICHAN D. Diffusion MRI of the human brain at ultra-high field (UHF): a review[J]. Neuroimage, 2018, 168: 172-180. DOI: 10.1016/j.neuroimage.2017.04.037.
[24]
LAKSHMANAN K, CARLUCCIO G, WALCZYK J, et al. Improved whole-brain SNR with an integrated high-permittivity material in a head array at 7T[J]. Magn Reson Med, 2021, 86(2): 1167-1174. DOI: 10.1002/mrm.28780.
[25]
FU F R, XIN S X, CHEN W F. Temperature- and frequency-dependent dielectric properties of biological tissues within the temperature and frequency ranges typically used for magnetic resonance imaging-guided focused ultrasound surgery[J]. Int J Hyperthermia, 2014, 30(1): 56-65. DOI: 10.3109/02656736.2013.868534.
[26]
GARCIA M M, CHAIM K, OTADUY M, et al. Investigating the influence of dielectric pads in 7T magnetic resonance imaging-simulated and experimental assessment[J/OL]. Curr Dir Biomed Eng, 2020, 6: 24-27 [2023-06-26]. https://www.degruyter.com/document/doi/10.1515/cdbme-2020-3007/html. DOI: 10.1515/cdbme-2020-3007.
[27]
GOLESTANIRAD L, ANGELONE L M, KIRSCH J, et al. Reducing RF-induced heating near implanted leads through high-dielectric capacitive bleeding of current (CBLOC)[J]. IEEE Trans Microw Theory Tech, 2019, 67(3): 1265-1273. DOI: 10.1109/TMTT.2018.2885517.
[28]
NEVES A L, LEROI L, RAOLISON Z, et al. Compressed perovskite aqueous mixtures near their phase transitions show very high permittivities: new prospects for high-field MRI dielectric shimming[J]. Magn Reson Med, 2018, 79(3): 1753-1765. DOI: 10.1002/mrm.26771.
[29]
WILKINSON D J, ATHERTON P J, PHILLIPS B E, et al. Application of deuterium oxide (D2O) to metabolic research: just D2it?O Depends just how you D2O it![J/OL]. Am J Physiol Endocrinol Metab, 2015, 308(9): E847 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/25934906/. DOI: 10.1152/ajpendo.00581.2014.
[30]
FRACASSO A, DUMOULIN S O, PETRIDOU N. Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex[J/OL]. Prog Neurobiol, 2021, 207: 102187 [2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/34798198/. DOI: 10.1016/j.pneurobio.2021.102187.
[31]
KHAN M H, HUANG X F, TIAN X F, et al. Short- and long-term effects of 3.5-23.0 Tesla ultra-high magnetic fields on mice behaviour[J]. Eur Radiol, 2022, 32(8): 5596-5605. DOI: 10.1007/s00330-022-08677-8.
[32]
GLANS A, WILÉN J, LINDGREN L, et al. Health effects related to exposure of static magnetic fields and acoustic noise-comparison between MR and CT radiographers[J]. Eur Radiol, 2022, 32(11): 7896-7909. DOI: 10.1007/s00330-022-08843-y.

PREV 7.0 T MR GluCEST imaging application value in evaluating therapeutic efficacy of model rats with depression
NEXT Analysis of topological properties of brain functional networks in adolescents with non-suicidal self-injury based on graph theory
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn