Share:
Share this content in WeChat
X
Clinical Article
Preliminary study on different stages of Parkinson's Disease combined with amide proton transfer imaging and quantitative susceptibility mapping
YANG Chen  LIAO Qi  JU Chao  WANG Hong  HAO Lu 

Cite this article as: YANG C, LIAO Q, JU C, et al. Preliminary study on different stages of Parkinson's Disease combined with amide proton transfer imaging and quantitative susceptibility mapping[J]. Chin J Magn Reson Imaging, 2024, 15(12): 79-86. DOI:10.12015/issn.1674-8034.2024.12.012.


[Abstract] Objective To analyze the differences of amid proton transfer weighted (APTw) value and magnetic susceptibility value (MSV) of the substantia nigra dentate system between different stages of Parkinson's disease (PD) and healthy control (HC) by amid proton transfer (APT) and quantitative susceptibility mapping (QSM). To evaluate whether the APTw value or MSV in substantia nigra (SN), red nucleus (RN) and dentate nucleus (DN) could serve as imaging findings for determining different stages of Parkinson's disease.Materials and Methods A total of 35 patients with PD and 25 HCs (age and sex matched) were recruited from the Second Affiliated Hospital of Xinjiang Medical University. The PD group was divided into an early-stage PD (ESPD) group of 22 cases and an advanced-stage PD (ASPD) group of 13 cases based on Hoehn-Yahr grading, then, comparing the differences between APTw values and MSV among different regions of nuclei in each group. Finally, the receiver operating characteristic (ROC) curves were used to analyze the diagnostic performance of APT, QSM, and their combined use. The receiver operating characteristic (ROC) curves and DeLong test were used to evaluate the efficiency of APT, QSM and combined parameters. Finally, the correlation of clinical scales with APTw values and MSV were analyzed.Results The APTw values between the ESPD group and the HC group, the ESPD group and the ASPD group, the ASPD group and the HC group in the SN, between the ASPD group and the HC group in the RN, and between the ESPD group and the HC group, the ASPD group and the HC group in the DN show statistically significant differences (P<0.05). The MSV values between the ESPD group and the HC group, the ESPD group and the ASPD group, the ASPD group and the HC group in the SN, between the ASPD group and the HC group, the ASPD group and the ESPD group in the RN, and between the ASPD group and the HC group, the ASPD group and the ESPD group in the DN show statistically significant differences (P<0.05). The area under the curve (AUC) of APT, QSM, and their combination in distinguishing the ESPD group from the HC group are 0.886, 0.792, and 0.926, respectively, with statistically significant differences (P<0.05); in distinguishing the ESPD group from the ASPD group, the AUC are 0.787, 0.885, and 0.939, respectively, with statistically significant differences (P<0.05). There is a positive correlation between the APTw values in the SN and MoCA scores, and a negative correlation between the MSV in the SN, RN and MoCA scores; there is a positive correlation between the APTw values in the SN, RN and MMSE scores, all showing significant differences (P<0.05).Conclusions APT and QSM could be used as imaging indicators for evaluating the stages of PD, and the combined application of APT and QSM can significantly improve diagnostic efficiency.
[Keywords] Parkinson's disease;amide proton transfer imaging;quantitative susceptibility mapping;magnetic resonance imaging;staging

YANG Chen1, 2   LIAO Qi1, 2   JU Chao1, 2   WANG Hong1   HAO Lu1*  

1 Department of Medical Imaging Center, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi830063, China

2 Xinjiang Medical University, Urumqi830063, China

Corresponding author: HAO L, E-mail: 362314559@qq.com

Conflicts of interest   None.

Received  2024-07-16
Accepted  2024-11-22
DOI: 10.12015/issn.1674-8034.2024.12.012
Cite this article as: YANG C, LIAO Q, JU C, et al. Preliminary study on different stages of Parkinson's Disease combined with amide proton transfer imaging and quantitative susceptibility mapping[J]. Chin J Magn Reson Imaging, 2024, 15(12): 79-86. DOI:10.12015/issn.1674-8034.2024.12.012.

[1]
DE GROOTE C, DUJARDIN K, DEFEBVRE L, et al. Development of a screening tool for assessing sexual difficulties among patients with Parkinson's disease: The PD-SDS[J]. J Parkinsons Dis, 2024: 1-11. DOI: 10.3233/jpd-240063.
[2]
KWON E H, TENNAGELS S, GOLD R, et al. Update on CSF biomarkers in Parkinson's disease[J/OL]. Biomolecules, 2022, 12(2): 329 [2024-07-16]. https://pubmed.ncbi.nlm.nih.gov/35204829/. DOI: 10.3390/biom12020329.
[3]
KIM M J, KIM J, KHO H S. Comparison of clinical characteristics between burning mouth syndrome patients with bilateral and unilateral symptoms[J]. Int J Oral Maxillofac Surg, 2020, 49(1): 38-43. DOI: 10.1016/j.ijom.2019.06.013.
[4]
WANG M, WANG J W, ZHANG K Z, et al. Alterations of brain activity in different motor subtypes of Parkinson disease based on regional homogeneity analysis[J]. China J Radiol, 2019, 53(9): 748-754. DOI: 10.3760/cma.j.issn.1005-1201.2019.09.007.
[5]
ZHOU J, ZAISS M, KNUTSSON L, et al. Review and consensus recommendations on clinical APT‐weighted imaging approaches at 3T: Application to brain tumors[J]. Magn Reson Med, 2022, 88(2): 546-574. DOI: 10.1002/mrm.29241.
[6]
XIAO B, HE N, WANG Q, et al. Quantitative susceptibility mapping based hybrid feature extraction for diagnosis of Parkinson's disease[J/OL]. Neuroimage Clin, 2019, 24: 102070 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861598. DOI: 10.1016/j.nicl.2019.102070.
[7]
SOTIRIOS B, DEMETRIOU E, TOPRICEANU C C, et al. The role of APT imaging in gliomas grading: A systematic review and meta-analysis[J/OL]. Eur J Radiol, 2020, 133: 109353 [2024-07-16]. https://www.pubmed.ncbi.nlm.nih.gov/33120241. DOI: 10.1016/j.ejrad.2020.109353.
[8]
MENG N, WANG X, SUN J, et al. Evaluation of amide proton transfer-weighted imaging for endometrial carcinoma histological features: a comparative study with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(11): 8388-8398. DOI: 10.1007/s00330-021-07966-y.
[9]
KOIKE H, MORIKAWA M, ISHIMARU H, et al. Quantitative chemical exchange saturation transfer imaging of amide proton transfer differentiates between cerebellopontine angle schwannoma and meningioma: Preliminary results[J/OL]. Int J Mol Sci, 2022, 23(17): 10187 [2024-07-16]. https://pubmed.ncbi.nlm.nih.gov/36077581/. DOI: 10.3390/ijms231710187.
[10]
WU M, JIANG T, GUO M, et al. Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas[J]. Eur Radiol, 2023, 34(5): 2986-2996. DOI: 10.1007/s00330-023-10343-6.
[11]
TIAN Y T, LI X Y, WANG X N, et al. CEST 2022-three-dimensional amide proton transfer (APT) imaging can identify the changes of cerebral cortex in Parkinson's disease[J]. Magn Reson Imaging, 2023, 102: 235-241. DOI: 10.1016/j.mri.2023.06.006.
[12]
LI C, CHEN M, ZHAO X, et al. Chemical exchange saturation transfer MRI signal loss of the substantia nigra as an imaging biomarker to evaluate the diagnosis and severity of Parkinson's disease[J/OL]. Front Neurosci, 2017, 11: 489 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583514. DOI: 10.3389/fnins.2017.00489.
[13]
GUAN X, LANCIONE M, AYTON S, et al. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping[J/OL]. Neuroimage, 2024, 289: 120547 [2024-07-16]. https://linkinghub.elsevier.com/retrieve/pii/S1053-8119(24)00042-9. DOI: 10.1016/j.neuroimage.2024.120547.
[14]
MOHAMMADI S, GHADERI S, FATEHI F. Putamen iron quantification in diseases with neurodegeneration: a meta-analysis of the quantitative susceptibility mapping technique[J]. Brain Imaging Behav, 2024, 18(5): 1239-1255. DOI: 10.1007/s11682-024-00895-6.
[15]
VOON C C, WILTGEN T, WIESTLER B, et al. Quantitative susceptibility mapping in multiple sclerosis: A systematic review and meta-analysis[J/OL]. Neuroimage Clin, 2024, 42: 103598 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002889. DOI: 10.1016/j.nicl.2024.103598.
[16]
MENG Y, TANG T, WANG J, et al. The correlation of orthostatic hypotension in Parkinson disease with the disease course and severity and its impact on quality of life[J/OL]. Medicine (Baltimore), 2024, 103(19): e38169 [2024-07-28]. https://journals.lww.com/md-journal/fulltext/2024/05100/the_correlation_of_orthostatic_hypotension_in.6.aspx. DOI: 10.1097/MD.0000000000038169.
[17]
NASREDDINE Z S, PHILLIPS N A, BÉDIRIAN V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment[J]. J Am Geriatr Soc, 2005, 53(4): 695-699. DOI: 10.1111/j.1532-5415.2005.53221.x.
[18]
LU L Y, LI F F, MA Y H, et al. Functional connectivity disruption of the substantia nigra associated with cognitive impairment in acute mild traumatic brain injury[J]. Eur J Radiol, 2019, 114: 69-75. DOI: 10.1016/j.ejrad.2019.03.002.
[19]
AREVALO-RODRIGUEZ I, SMAILAGIC N, ROQUÉ-FIGULS M, et al. Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI)[J/OL]. Cochrane Database Syst Rev, 2021, 7(7): CD010783 [2024-07-28]. https://pubmed.ncbi.nlm.nih.gov/34313331/. DOI: 10.1002/14651858.CD010783.pub3.
[20]
BIKBOV M M, KAZAKBAEVA G M, IAKUPOVA E M, et al. Cognitive impairment in the population-based ural very old study[J/OL]. Front Aging Neurosci, 2022, 14: 912755 [2024-07-28]. https://pubmed.ncbi.nlm.nih.gov/35928990/. DOI: 10.3389/fnagi.2022.912755.
[21]
JIANG Y, FANG J P, FENG T, et al. Structural differences in series scores of Hamilton Anxiety Scale in Parkinson's disease patients[J]. Chin J Rehabil Theory Pract, 2021, 27(3): 325-328. DOI: 10.3969/j.issn.1006-9771.2021.03.013.
[22]
WEBSTER G D, HOWELL J L, SHEPPERD J A. Self-Esteem in 60 Seconds: The Six-Item State Self-Esteem Scale (SSES-6)[J]. Assessment, 2022, 29(2): 152-168. DOI: 10.1177/1073191120958059.
[23]
FANG T, MENG N, FENG P, et al. A Comparative study of amide proton transfer weighted imaging and intravoxel incoherent motion MRI techniques versus (18) F‐FDG PET to distinguish solitary pulmonary lesions and their subtypes[J]. J Magn Reson Imaging, 2022, 55(5): 1376-1390. DOI: 10.1002/jmri.27977.
[24]
ZHOU J, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[25]
LI C, PENG S, WANG R, et al. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla[J]. Eur Radiol, 2014, 24(10): 2631-2639. DOI: 10.1007/s00330-014-3241-7.
[26]
MCAFEE S S, ROBINSON G, GAJJAR A, et al. Secondary cerebro-cerebellar and intra-cerebellar dysfunction in cerebellar mutism syndrome[J/OL]. Neuro Oncol, 2024: noae070 [2024-07-27]. https://academic.oup.com/neuro-oncology/advance-article-abstract/doi/10.1093/neuonc/noae070/7641653?redirectedFrom=fulltext&login=false. DOI: 10.1093/neuonc/noae070.
[27]
HARDING I H, KARIM M I NUR, SELVADURAI L P, et al. Localized changes in dentate nucleus shape and magnetic susceptibility in friedreich ataxia[J]. Mov Disord, 2024, 39(7): 1109-1118. DOI: 10.1002/mds.29816.
[28]
ZHANG H Y, TANG H, CHEN W X, et al. Mapping the functional connectivity of the substantia nigra, red nucleus and dentate nucleus: A network analysis hypothesis associated with the extrapyramidal system[J]. Neurosci Lett, 2015, 606: 36-41. DOI: 10.1016/j.neulet.2015.08.029.
[29]
KULKARNI M, KENT J S, PARK K, et al. Resting-state functional connectivity-based parcellation of the human dentate nucleus: new findings and clinical relevance[J]. Brain Struct Funct, 2023, 228(7): 1799-1810. DOI: 10.1007/s00429-023-02665-4.
[30]
SOLSTRAND DAHLBERG L, LUNGU O, DOYON J. Cerebellar contribution to motor and non-motor functions in Parkinson's disease: A meta-analysis of fMRI findings[J/OL]. Front Neurol, 2020, 11: 127 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056869. DOI: 10.3389/fneur.2020.00127.
[31]
YOSHIDA J, OÑATE M, KHATAMI L, et al. Cerebellar contributions to the basal ganglia influence motor coordination, reward processing, and movement vigor[J]. J Neurosci, 2022, 42(45): 8406-8415. DOI: 10.1523/JNEUROSCI.1535-22.2022.
[32]
NATHOO N, GEE M, NELLES K, et al. Quantitative susceptibility mapping changes relate to gait issues in Parkinson's disease[J]. Can J Neurol Sci, 2023, 50(6): 853-860. DOI: 10.1017/cjn.2022.316.
[33]
AN H, ZENG X, NIU T, et al. Quantifying iron deposition within the substantia nigra of Parkinson's disease by quantitative susceptibility mapping[J]. J Neurol Sci, 2018, 386: 46-52. DOI: 10.1016/j.jns.2018.01.008.
[34]
GUAN X, XUAN M, GU Q, et al. Regionally progressive accumulation of iron in Parkinson's disease as measured by quantitative susceptibility mapping[J/OL]. NMR Biomed, 2017, 30(4): e3489 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977211. DOI: 10.1002/nbm.3489.
[35]
ZHANG Y, YANG M, WANG F, et al. Histogram analysis of quantitative susceptibility mapping for the diagnosis of Parkinson's disease[J]. Acad Radiol, 2022, 29Suppl 3: S71-S79. DOI: 10.1016/j.acra.2020.10.027.
[36]
LI K R, AVECILLAS-CHASIN J, NGUYEN T D, et al. Quantitative evaluation of brain iron accumulation in different stages of Parkinson's disease[J]. J Neuroimaging, 2022, 32(2): 363-371. DOI: 10.1111/jon.12957.
[37]
MURAKAMI Y, KAKEDA S, WATANABE K, et al. Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease[J]. AJNR Am J Neuroradiol, 2015, 36(6): 1102-1108. DOI: 10.3174/ajnr.A4260.
[38]
HOLDEN H, VENKATESH S, BUDROW C, et al. The effects of L-DOPA on gait abnormalities in a unilateral 6-OHDA rat model of Parkinson's disease[J/OL]. Physiol Behav, 2024, 281: 114563 [2024-07-16]. https://linkinghub.elsevier.com/retrieve/pii/S0031-9384(24)00108-2. DOI: 10.1016/j.physbeh.2024.114563.
[39]
DU G, LEWIS M M, SICA C, et al. Distinct progression pattern of susceptibility MRI in the substantia nigra of Parkinson's patients[J]. Mov Disord, 2018, 33(9): 1423-1431. DOI: 10.1002/mds.27318.
[40]
GRIMALDI S, LE TROTER A, MENDILI M M EL, et al. Energetic dysfunction and iron overload in early Parkinson's disease: Two distinct mechanisms?[J/OL]. Parkinsonism Relat Disord, 2024, 124: 106996 [2024-07-28]. https://www.sciencedirect.com/science/article/pii/S1353802024010083?via%3Dihub. DOI: 10.1016/j.parkreldis.2024.106996.
[41]
CHEN M, WANG Y, ZHANG C, et al. Free water and iron content in the substantia nigra at different stages of Parkinson's disease[J/OL]. Eur J Radiol, 2023, 167: 111030. [2024-07-28]. https://www.sciencedirect.com/science/article/pii/S0720048X23003443?via%3Dihub. DOI: 10.1016/j.ejrad.2023.111030.
[42]
ZHANG Y, YONG X, LIU R, et al. Whole‐brain chemical exchange saturation transfer imaging with optimized turbo spin echo readout[J]. Magn Reson Med, 2020, 84(3): 1161-1172. DOI: 10.1002/mrm.28184.
[43]
BARBA L, PAOLINI PAOLETTI F, BELLOMO G, et al. Alpha and beta synucleins: from pathophysiology to clinical application as biomarkers[J]. Mov Disord, 2022, 37(4):669-683. DOI: 10.1002/mds.28941.
[44]
JIN J, SU D, ZHANG J, et al. Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies[J/OL]. Chin Med J (Engl), 2024 [2024-07-16]. https://journals.lww.com/cmj/fulltext/9900/iron_deposition_in_subcortical_nuclei_of.1086.aspx. DOI: 10.1097/CM9.0000000000003167.
[45]
ZHAO Q Y, TAO Y Q, ZHAO K, et al. Structural insights of Fe3+ induced α-synuclein fibrillation in Parkinson's disease[J/OL]. J Mol Biol, 2023, 435(1): 167680 [2024-07-16]. https://pubmed.ncbi.nlm.nih.gov/35690099/. DOI: 10.1016/j.jmb.2022.167680.

PREV Alterations in gray matter structure in adolescents with non-suicidal self-injury comorbid with depressive disorder
NEXT A semi-quantitative MRI study on brain developmental abnormalities in infants of gestational diabetic mothers
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn