Share:
Share this content in WeChat
X
Clinical Article
Analysis of the characteristics of carotid plaque based on HRMR-VWI and the clinical application value of Plague-RADS score
SONG Mengxing  Josephat Sylvester Ndamka  LI Shuai  PENG Wenjia 

Cite this article as: SONG M X, Sylvester Ndamka Josephat, LI S, et al. Analysis of the characteristics of carotid plaque based on HRMR-VWI and the clinical application value of Plague-RADS score[J]. Chin J Magn Reson Imaging, 2024, 15(12): 101-108. DOI:10.12015/issn.1674-8034.2024.12.015.


[Abstract] Objective This study utilizes high-resolution magnetic resonance vessel wall imaging (HRMR-VWI) to analyze the characteristics of carotid atherosclerotic plaques, and Plaque Reporting and Data System (Plaque-RADS) scoring system were performed to explore the clinical value of Plaque-RADS.Materials and Methods A retrospective collection of 85 patients who underwent HRMR-VWI from January 2022 to December 2023 was analyzed. This cohort included 33 patients in the stroke group and 52 patients in the non-stroke group. Independent sample t-tests or Mann-Whitney U tests were used to compare parameters between culprit and non-culprit plaques. logistic regression analysis identified independent risk factors for plaque characteristics, and receiver operating characteristic (ROC) curves were used to assess the diagnostic efficiency of these parameters.Results There were 33 culprit and 29 non-culprit plaques in the stroke group, while 102 non-culprit plaques in the non-stroke group. Culprit plaques had significantly smaller minimum lumen area and a lower percentage of fibrous tissue volume (P<0.05); They also exhibited greater plaque length, volume, average wall thickness, minimum and maximum wall thickness, remodeling index, and volume of intraplaque hemorrhage (IPH) or thrombus (P<0.05) compared to non-culprit plaques. Furthermore, compared to non-culprit plaques, culprit lesions had higher plaque burden, degree of stenosis, and Plaque-RADS scores (P<0.001). Logistic regression revealed that plaque length [odds ratio (OR)=1.67, 95% confidence interval (CI): 1.04-1.10)], plaque burden (OR=3.57, 95% CI: 1.76-7.24), remodeling index (OR=3.26, 95% CI: 1.62-6.59), presence of IPH or thrombus (OR=5.33, 95% CI: 2.27-12.52), and Plaque-RADS score (OR=4.66, 95% CI: 2.35-9.24), among others, were significant risk factors for ipsilateral acute cerebral infarction (ACI). The area under the curve (AUC) for Plaque-RADS scoring alone was 0.815 (95% CI: 0.732-0.898), and combining it with other risk factors yielded an AUC of 0.837 (95% CI: 0.735-0.921).Conclusions Carotid plaques with IPH or thrombus, increased plaque length, burden, remodeling index, degree of stenosis, average wall thickness, and higher Plaque-RADS scores significantly elevate the risk of ipsilateral ACI. The Plaque-RADS score provides a standardized evaluation of carotid plaques, indicating the risk stratification and identifying high-risk patients, thus serving as an effective predictor of ACI. This study underscores the value of Plaque-RADS in enhancing clinical decision-making and improving outcomes for patients with carotid atherosclerosis.
[Keywords] carotid atherosclerotic plaque;acute cerebral infarction;magnetic resonance imaging;high-resolution magnetic resonance vessel wall imaging;Plaque Reporting and Data System

SONG Mengxing1   Josephat Sylvester Ndamka2   LI Shuai1   PENG Wenjia1*  

1 Department of Radiology, the First affiliated Hospital of Naval Medical University, Shanghai200433, China

2 Foreign Training Group, Naval Medical University, Shanghai200433, China

Corresponding author: PENG W J, E-mail: cindywpj@aliyun.com

Conflicts of interest   None.

Received  2024-09-11
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.015
Cite this article as: SONG M X, Sylvester Ndamka Josephat, LI S, et al. Analysis of the characteristics of carotid plaque based on HRMR-VWI and the clinical application value of Plague-RADS score[J]. Chin J Magn Reson Imaging, 2024, 15(12): 101-108. DOI:10.12015/issn.1674-8034.2024.12.015.

[1]
BOS D, ARSHI B, VAN DEN BOUWHUIJSEN Q J A, et al. Atherosclerotic carotid plaque composition and incident stroke and coronary events[J]. J Am Coll Cardiol, 2021, 77(11): 1426-1435. DOI: 10.1016/j.jacc.2021.01.038.
[2]
TAN K S, PANDIAN J D, LIU L, et al. Stroke in Asias[J]. Cerebrovasc Dis Extra, 2024, 14(1): 58-75. DOI: 10.1159/000538928.
[3]
HILKENS N A, CASOLLA B, LEUNG T W, et al. Stroke[J]. Lancet, 2024, 403(10446): 2820-2836. DOI: 10.1016/s0140-6736(24)00642-1.
[4]
FEIGIN V L, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29. DOI: 10.1177/17474930211065917.
[5]
TSAO C W, ADAY A W, ALMARZOOQ Z I, et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association[J/OL]. Circulation, 2023, 147(8): e93-e621 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/36695182/. DOI: 10.1161/CIR.0000000000001123.
[6]
VAN DER TOORN J E, BOS D, IKRAM M K, et al. Carotid plaque composition and prediction of incident atherosclerotic cardiovascular disease[J/OL]. Circ Cardiovasc Imaging, 2022, 15(3): e013602 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/35196868/. DOI: 10.1161/CIRCIMAGING.121.013602.
[7]
YU M X, YANG D D, ZHANG R H, et al. Carotid atherosclerotic plaque predicts progression of intracranial artery atherosclerosis: a MR imaging-based community cohort study[J/OL]. Eur J Radiol, 2024, 172: 1113002 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/38281437/. DOI: 10.1016/j.ejrad.2024.111300.
[8]
SPENCE J D. Carotid plaque burden is a stronger predictor of cardiovascular risk than IMT[J/OL]. J Am Coll Cardiol, 2022, 80(21): e191 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/36396207/. DOI: 10.1016/j.jacc.2022.08.806.
[9]
FERNÁNDEZ-ALVAREZ V, LINARES-SÁNCHEZ M, SUÁREZ C, et al. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability[J/OL]. Biomolecules, 2023, 13(8): 1236 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/37627301/. DOI: 10.3390/biom13081236.
[10]
BARADARAN H, GUPTA A. Extracranial vascular disease: carotid stenosis and plaque imaging[J]. Neuroimaging Clin N Am, 2021, 31(2): 157-166. DOI: 10.1016/j.nic.2021.02.002.
[11]
BOS D, VAN DAM-NOLEN D H K, GUPTA A, et al. Advances in multimodality carotid plaque imaging: AJR expert panel narrative review[J]. AJR Am J Roentgenol, 2021, 217(1): 16-26. DOI: 10.2214/AJR.20.24869.
[12]
YUAN W Z, LIU X Y, YAN Z R, et al. Association between high-resolution magnetic resonance vessel wall imaging characteristics and recurrent stroke in patients with intracranial atherosclerotic steno-occlusive disease: a prospective multicenter study[J]. Int J Stroke, 2024, 19(5): 569-576. DOI: 10.1177/17474930241228203.
[13]
SABA, CAU R, MURGIA A, et al. Carotid plaque-RADS: a novel stroke risk classification system[J]. JACC Cardiovasc Imaging, 2024, 17(1): 62-75. DOI: 10.1016/j.jcmg.2023.09.005.
[14]
BENSON J C, SABA L, BATHLA G, et al. MR imaging of carotid artery atherosclerosis: updated evidence on high-risk plaque features and emerging trends[J]. AJNR Am J Neuroradiol, 2023, 44(8): 880-888. DOI: 10.3174/ajnr.A7921.
[15]
ZHAI S J, JIA L, KUKUN H J, et al. Predictive power of high-resolution vessel wall magnetic resonance imaging in ischemic stroke[J]. Am J Transl Res, 2022, 14(1): 664-671.
[16]
PAKIZER D, KOZEL J, ELMERS J, et al. Diagnostics accuracy of magnetic resonance imaging in detection of atherosclerotic plaque characteristics in carotid arteries compared to histology: a systematic review[J/OL]. J Magn Reson Imaging, 2024 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/38981139/. DOI: 10.1002/jmri.29522.
[17]
CHENG X Q, LIU J, LI H X, et al. Incremental value of enhanced plaque length for identifying intracranial atherosclerotic culprit plaques: a high-resolution magnetic resonance imaging study[J/OL]. Insights Imag, 2023, 14(1): 99 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/37227551/. DOI: 10.1186/s13244-023-01449-y.
[18]
Vascular Surgery Group of Surgical Society of Chinese Medical Association. Guidelines for diagnosis and treatment of carotid artery stenosis[J]. Chin J Vasc Surg, 2017, 2(2): 78-84. DOI: 10.3760.cma.j.issn.2096-1863.2017.02.003.
[19]
VAN DAM-NOLEN D H K, TRUIJMAN M T B, VAN DER KOLK A G, et al. Carotid plaque characteristics predict recurrent ischemic stroke and TIA: the PARISK (plaque At RISK) study[J]. JACC Cardiovasc Imaging, 2022, 15(10): 1715-1726. DOI: 10.1016/j.jcmg.2022.04.003.
[20]
PERET A, ROMERO-SANCHEZ G, DABIRI M, et al. MR angiography of extracranial carotid disease[J]. Magn Reson Imaging Clin N Am, 2023, 31(3): 395-411. DOI: 10.1016/j.mric.2023.04.003.
[21]
ZHANG Y, BAI Y, XIE J, et al. Carotid plaque components and other carotid artery features associated with risk of stroke: a systematic review and meta-analysis[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(12): 106857 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/36334373/. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106857.
[22]
BENSON J C, CHEEK H, AUBRY M C, et al. Cervical carotid plaque MRI: review of atherosclerosis imaging features and their histologic underpinnings[J]. Clin Neuroradiol, 2021, 31(2): 295-306. DOI: 10.1007/s00062-020-00987-y.
[23]
YUAN C, CANTON G, HATSUKAMI T S. Unfinished debate: why IPH-based metrics are still needed-An Editorial for "Signal intensity and volume of carotid intraplaque hemorrhage on magnetic resonance imaging and the risk of ipsilateral cerebrovascular events: the Plaque At RISK (PARISK) study"[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101071 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/39121951/. DOI: 10.1016/j.jocmr.2024.101071.
[24]
BALMOS I A, SLEVIN M, BRINZANIUC K, et al. Intraplaque neovascularization, CD68+ and iNOS2+ macrophage infiltrate intensity are associated with atherothrombosis and intraplaque hemorrhage in severe carotid atherosclerosis[J/OL]. Biomedicines, 2023, 11(12): 3275 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/38137496/. DOI: 10.3390/biomedicines11123275.
[25]
SINGH S, TORZEWSKI M. Fibroblasts and their pathological functions in the fibrosis of aortic valve sclerosis and atherosclerosis[J/OL]. Biomolecules, 2019, 9(9): 472 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/31510085/. DOI: 10.3390/biom9090472.
[26]
TAO L, WANG X H, LI X Q, et al. Intracranial plaque with large lipid core is associated with embolic stroke of undetermined source[J]. Ann Clin Transl Neurol, 2023, 10(3): 363-372. DOI: 10.1002/acn3.51726.
[27]
GIMNICH O A, ZIL-E-ALI A, BRUNNER G. Imaging approaches to the diagnosis of vascular diseases[J]. Curr Atheroscler Rep, 2022, 24(2): 85-96. DOI: 10.1007/s11883-022-00988-x.
[28]
BALMOS I A, HORVÁTH E, BRINZANIUC K, et al. Inflammation, microcalcification, and increased expression of osteopontin are histological hallmarks of plaque vulnerability in patients with advanced carotid artery stenosis[J/OL]. Biomedicines, 2023, 11(3): 881 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/36979863/. DOI: 10.3390/biomedicines11030881.
[29]
GONG X, YU C, LU Z, et al. Residual inflammatory risk and vulnerable plaque in the carotid artery in patients with ischemic stroke[J/OL]. Front Neurol, 2024, 15: 1325960 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/38721119/. DOI: 10.3389/fneur.2024.1325960.
[30]
SABA, NARDI V, CAU R, et al. Carotid artery plaque calcifications: lessons from histopathology to diagnostic imaging[J]. Stroke, 2022, 53(1): 290-297. DOI: 10.1161/STROKEAHA.121.035692.
[31]
SUN Y M, XU H Y, WANG S, et al. Carotid massive intraplaque hemorrhage, lipid-rich necrotic core, and heavy circumferential calcification were associated with new ipsilateral ischemic cerebral lesions after carotid artery stenting: high-resolution magnetic resonance vessel wall imaging study[J]. Cardiovasc Diagn Ther, 2023, 13(2): 355-366. DOI: 10.21037/cdt-22-543.
[32]
FU F L, LIU X L, ZHANG R, et al. Prevalence and clinical implications of calcification in internal carotid artery stenosis: a retrospective study[J/OL]. BMC Neurol, 2024, 24(1): 279 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/39127616/. DOI: 10.1186/s12883-024-03788-9.
[33]
HOMSSI M, SAHA A, DELGADO D, et al. Extracranial carotid plaque calcification and cerebrovascular ischemia: a systematic review and meta-analysis[J]. Stroke, 2023, 54(10): 2621-2628. DOI: 10.1161/STROKEAHA.123.042807.
[34]
LUO J C, BAI X S, TIAN Q Y, et al. Patterns and implications of artery remodeling based on high-resolution vessel wall imaging in symptomatic severe basilar artery stenosis[J]. Quant Imaging Med Surg, 2023, 13(4): 2098-2108. DOI: 10.21037/qims-22-771.
[35]
KINOSHITA D, SUZUKI K, YUKI H, et al. Coronary plaque phenotype associated with positive remodeling[J]. J Cardiovasc Comput Tomogr, 2024, 18(4): 401-407. DOI: 10.1016/j.jcct.2024.04.009.
[36]
PARMA L, DUCHENE J, WEBER C. Breaking point: how intraplaque hemorrhage propels plaque rupture[J]. Circ Res, 2024, 135(2): 317-319. DOI: 10.1161/CIRCRESAHA.124.324795.

PREV Combined analysis based on the characteristics of intracranial atherosclerotic plaque and apparent diffusion coefficient histogram in predicting the recurrence of ischemic stroke
NEXT Application value of three- dimensional pseudocontinuous arterial spin labeling in diagnosing cervical small lymph node metastases in nasopharyngeal carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn