Share:
Share this content in WeChat
X
Clinical Article
Application value of three- dimensional pseudocontinuous arterial spin labeling in diagnosing cervical small lymph node metastases in nasopharyngeal carcinoma
GU Donglian  LIU Lu  WU Min  JIN Guanqiao 

Cite this article as: GU D L, LIU L, WU M, et al. Application value of three- dimensional pseudocontinuous arterial spin labeling in diagnosing cervical small lymph node metastases in nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(12): 109-115. DOI:10.12015/issn.1674-8034.2024.12.016.


[Abstract] Objective To investigate the value of three- dimensional pseudocontinuous arterial spin labeling (3D pCASL) in diagnosing cervical small metastatic lymph node (SMLN) in nasopharyngeal carcinoma.Materials and Methods A total of 63 cases of nasopharyngeal carcinoma were collected retrospectively. A combination of routine plain scanning, enhanced magnetic resonance imaging (MRI), and 3D pCASL scanning was conducted prior to treatment. Subsequent follow-ups involved routine plain scanning and enhanced MRI post-treatment. The evaluation of lymph nodes was based on the criteria for assessing lymph node metastasis established by the nasopharyngeal carcinoma Clinical Staging Committee of our country, combined with MRI images during the follow-up period. According to the diagnostic outcomes, the lymph nodes were categorized into three groups: large metastatic lymph node (LMLN) group (short diameter >10 mm), SMLN group (short diameter ≤10 mm), and benign lymph node (BLN) group. The differences among various groups in terms of the maximum diameter, minimum diameter, ratio of minimum diameter to maximum diameter, average blood flow (BFavg), minimum blood flow (BFmin), and maximum blood flow (BFmax) of lymph nodes were compared among all groups. The diagnostic efficacy of various parameters for cervical SMLN in nasopharyngeal carcinoma was evaluated using the receiver operating characteristic (ROC) curve.Results A total of 323 cervical lymph nodes were included, with 152 in the SMLN group, 97 in the LMLN group, and 74 in the BLN group. There were statistically significant differences in maximum diameter, minimum diameter, the ratio of minimum diameter to maximum diameter, BFavg, BFmax, and BFmin among the SMLN, LMLN, and BLN groups (P<0.001). The maximum diameter, minimum diameter, and the ratio of minimum diameter to maximum diameter in the LMLN group were all greater than those in the SMLN and BLN groups (P<0.001). The shortest diameter and the ratio of shortest diameter to maximum diameter in the SMLN group were both greater than those in the BLN group (P=0.010, P<0.001). The BFavg, BFmax, and BFmin in the BLN group were all lower than those in the SMLN and LMLN groups (P<0.001). There were no statistically significant differences in maximum diameter between the BLN and SMLN groups, as well as in BFavg, BFmax, and BFmin between the LMLN and SMLN groups (P>0.05). ROC analysis revealed that the area under the curve (AUC) values for differentiating BLN from SMLN in nasopharyngeal carcinoma using minimum diameter, the ratio of minimum diameter to maximum diameter, BFavg, BFmax, and BFmin were 0.712, 0.740, 0.952, 0.990, and 0.791, respectively. The corresponding cut-off values were 0.55 cm, 0.59, 39.4 mL/(min·100 g), 58.5 mL/(min·100 g), and 25.5 mL/(min·100 g), respectively.Conclusions 3D pCASL can effectively differentiate cervical SMLN in nasopharyngeal carcinoma, enhancing the accuracy of N staging for nasopharyngeal carcinoma.
[Keywords] nasopharyngeal carcinoma;metastatic lymph node;three-dimensional pseudocontinuous arterial spin labeling;magnetic resonance imaging;diagnosis;application value

GU Donglian   LIU Lu   WU Min   JIN Guanqiao*  

Medical Imaging Center, Cancer Hospital Affiliated to Guangxi Medical University, Nanning530021, China

Corresponding author: JIN G Q, E-mail: jinguanqiao77@gxmu.edu.cn

Conflicts of interest   None.

Received  2024-08-29
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.016
Cite this article as: GU D L, LIU L, WU M, et al. Application value of three- dimensional pseudocontinuous arterial spin labeling in diagnosing cervical small lymph node metastases in nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(12): 109-115. DOI:10.12015/issn.1674-8034.2024.12.016.

[1]
JIANG Y T, LIANG Z G, CHEN K H, et al. A dynamic nomogram combining tumor stage and magnetic resonance imaging features to predict the response to induction chemotherapy in locally advanced nasopharyngeal carcinoma[J]. Eur Radiol, 2023, 33(3): 2171-2184. DOI: 10.1007/s00330-022-09201-8.
[2]
ZHANG Y, HU Y X, ZHAO S, et al. The utility of 18F-FDG-PET-CT metabolic parameters in evaluating the primary tumor aggressiveness and lymph node metastasis of nasopharyngeal carcinoma[J/OL]. Clin Med Insights Oncol, 2024, 18: 11795549231225419 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/38322667/. DOI: 10.1177/11795549231225419.
[3]
YU X D, YANG F, LIU X, et al. Arterial spin labeling and diffusion-weighted imaging for identification of retropharyngeal lymph nodes in patients with nasopharyngeal carcinoma[J/OL]. Cancer Imaging, 2022, 22(1): 40 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/35978445/. DOI: 10.1186/s40644-022-00480-4.
[4]
CHEN Y P, CHAN A T C, LE Q T, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. DOI: 10.1016/S0140-6736(19)30956-0.
[5]
LI W Z, LV X, HU D, et al. Effect of induction chemotherapy with paclitaxel, cisplatin, and capecitabine vs cisplatin and fluorouracil on failure-free survival for patients with stage IVA to IVB nasopharyngeal carcinoma: a multicenter phase 3 randomized clinical trial[J]. JAMA Oncol, 2022, 8(5): 706-714. DOI: 10.1001/jamaoncol.2022.0122.
[6]
ZHAO Q, DONG A N, CUI C Y, et al. MRI-based metastatic nodal number and associated nomogram improve stratification of nasopharyngeal carcinoma patients: potential indications for individual induction chemotherapy[J]. J Magn Reson Imaging, 2023, 57(6): 1790-1802. DOI: 10.1002/jmri.28435.
[7]
LIU F, FANG X J, LIU S L. Intravoxel incoherent motion diffusion-weighted imaging for the diagnosis of small metastatic cervical lymph nodes of nasopharyngeal carcinoma[J]. Chin J Med Imag, 2020, 28(10): 766-769, 778. DOI: 10.3969/j.issn.1005-5185.2020.10.011.
[8]
WANG P, HU S D, WANG X Y, et al. Synthetic MRI in differentiating benign from metastatic retropharyngeal lymph node: combination with diffusion-weighted imaging[J]. Eur Radiol, 2023, 33(1): 152-161. DOI: 10.1007/s00330-022-09027-4.
[9]
CHEN J, LUO J W, HE X, et al. Evaluation of contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) in the detection of retropharyngeal lymph node metastases in nasopharyngeal carcinoma patients[J/OL]. Cancer Manag Res, 2020, 12: 1733-1739 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/32210614/. DOI: 10.2147/CMAR.S244034.
[10]
ZHANG G Y, LIU L Z, WEI W H, et al. Radiologic criteria of retropharyngeal lymph node metastasis in nasopharyngeal carcinoma treated with radiation therapy[J]. Radiology, 2010, 255(2): 605-612. DOI: 10.1148/radiol.10090289.
[11]
MACHADO N O, MACHADO L S. Laparoscopic cholecystectomy in the third trimester of pregnancy: report of 3 cases[J]. Surg Laparosc Endosc Percutan Tech, 2009, 19(6): 439-441. DOI: 10.1097/SLE.0b013e3181c30fed.
[12]
TANG S, LIN C J, PAN Z G, et al. Effects of MRI apparent diffusion coefficient applied to diagnosing small cervical lymph node metastases of nasopharyngeal carcinoma and delineating radiotherapy target volume[J]. Guangxi Med J, 2018, 40(17): 1949-1951, 1954. DOI: 10.11675/j.issn.0253-4304.2018.17.09.
[13]
XIE H, HUANG W J, LI S L, et al. Radiomics-based lymph nodes prognostic models from three MRI regions in nasopharyngeal carcinoma[J/OL]. Heliyon, 2024, 10(10): e31557 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/38803981/. DOI: 10.1016/j.heliyon.2024.e31557.
[14]
AMIN M B, GREENE F L, EDGE S B, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging[J]. CA Cancer J Clin, 2017, 67(2): 93-99. DOI: 10.3322/caac.21388.
[15]
XU H M, LIU Y , HUO R, et al. A comparative study between arterial spin labeling with different post labeling delay and CT perfusion in pre-and post-operative carotid endarterectomy[J]. J Pract Radiol, 2023, 39(10): 1694-1697, 1716. DOI: 10.3969/j.issn.1002-1671.2023.10.030.
[16]
DANGOULOFF-ROS V, DEROULERS C, FOISSAC F, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging[J]. Radiology, 2016, 281(2): 553-566. DOI: 10.1148/radiol.2016152228.
[17]
XIAO B H, WANG P G, ZHAO Y R, et al. Nasopharyngeal carcinoma perfusion MRI: comparison of arterial spin labeling and dynamic contrast-enhanced MRI[J/OL]. Medicine, 2020, 99(22): e20503 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/32481470/. DOI: 10.1097/MD.0000000000020503.
[18]
WANG Y, SU H, WANG N, et al. The observations on the properties of metabolic network connectivity within striatal-thalamo-cortical circuit in patients with Parkinson's diseases by arterial spin labeling imaging[J]. Chin J Magn Reson Imag, 2024, 15(1): 70-75, 81. DOI: 10.12015/issn.1674-8034.2024.01.011.
[19]
YU X J, HONG W P, YE M T, et al. Atypical primary central nervous system lymphoma and glioblastoma: multiparametric differentiation based on non-enhancing volume, apparent diffusion coefficient, and arterial spin labeling[J]. Eur Radiol, 2023, 33(8): 5357-5367. DOI: 10.1007/s00330-023-09681-2.
[20]
LÜ R R, YANG Z H, GE X, et al. Preliminary study of synthetic MRI combined with three-dimensional arterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma[J]. Chin J Magn Reson Imag, 2022, 13(8): 19-23, 35. DOI: 10.12015/issn.1674-8034.2022.08.004.
[21]
LIU T, XIAO L, WEI B, et al. Application value of mono- and bi-exponential model diffusion weighted imaging and arterial spin labeling in predicting short-term curative effect of recurrent nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(9): 63-69. DOI: 10.12015/issn.1674-8034.2023.09.011.
[22]
LIAO L P, LIAO H, LUO N B, et al. Investigating the diffusion and perfusion characteristics of intravoxel incoherent motion diffusion-weigh-ted imaging and arterial spin labeling in different stages of nasopharyngeal carcinoma[J]. Radiol Pract, 2022, 37(1): 29-34. DOI: 10.13609/j.cnki.1000-0313.2022.01.006.
[23]
SUN Z Q, HU S D, GE Y X, et al. Can arterial spin labeling perfusion imaging be used to differentiate nasopharyngeal carcinoma from nasopharyngeal lymphoma?[J]. J Magn Reson Imaging, 2021, 53(4): 1140-1148. DOI: 10.1002/jmri.27451.
[24]
SHAO L, YANG X, SUN Z, et al. Three-dimensional pseudo-continuous arterial spin-labelled perfusion imaging for diagnosing upper cervical lymph node metastasis in patients with nasopharyngeal carcinoma: a whole-node histogram analysis[J/OL]. Clin Radiol, 2024, 79(5): e736-e743 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/38341343/. DOI: 10.1016/j.crad.2024.01.017.
[25]
XIAO X T, WU Y S, CHEN Y P, et al. Patterns and prognosis of regional recurrence in nasopharyngeal carcinoma after intensity-modulated radiotherapy[J]. Cancer Med, 2023, 12(2): 1399-1408. DOI: 10.1002/cam4.5020.
[26]
ZHANG B, ZHA Y F, CHEN Z Q, et al. Comparative study of IVIM and 3D pCASL in the clinical staging of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2017, 8(9): 647-653. DOI: 10.12015/issn.1674-8034.2017.09.002.
[27]
RAZEK A A K A, HELMY E. Multi-parametric arterial spin labeling and diffusion-weighted imaging in differentiation of metastatic from reactive lymph nodes in head and neck squamous cell carcinoma[J]. Eur Arch Otorhinolaryngol, 2021, 278(7): 2529-2535. DOI: 10.1007/s00405-020-06390-0.
[28]
ABDEL RAZEK A A K, TALAAT M, EL-SEROUGY L, et al. Clinical applications of arterial spin labeling in brain tumors[J]. J Comput Assist Tomogr, 2019, 43(4): 525-532. DOI: 10.1097/RCT.0000000000000873.
[29]
SUN Z Q, LI J, WANG T, et al. Predicting perigastric lymph node metastasis in gastric cancer with CT perfusion imaging: a prospective analysis[J/OL]. Eur J Radiol, 2020, 122: 108753 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/31794892/. DOI: 10.1016/j.ejrad.2019.108753.
[30]
GUO L J, LIU X M, HUA J, et al. Differential detection of metastatic and inflammatory lymph nodes using inflow-based vascular-space-occupancy (iVASO) MR imaging[J/OL]. Magn Reson Imaging, 2022, 85: 128-132 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/34687849/. DOI: 10.1016/j.mri.2021.10.035.
[31]
SONG Q L, YU Y Y, ZHANG X M, et al. Value of MRI and diffusion-weighted imaging in diagnosing normal-sized pelvic lymph nodes metastases in patients with cervical cancer[J/OL]. Br J Radiol, 2022, 95(1138): 20200203 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/33095657/. DOI: 10.1259/bjr.20200203.

PREV Analysis of the characteristics of carotid plaque based on HRMR-VWI and the clinical application value of Plague-RADS score
NEXT Value of intratumoral and peritumoral radiomics based on DCE-MRI and DWI in predicting HER-2 status in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn