Share:
Share this content in WeChat
X
Clinical Article
Value of intratumoral and peritumoral radiomics based on DCE-MRI and DWI in predicting HER-2 status in breast cancer
WANG Yuwei  SUN Min  LIU Fenghai  KANG Liqing  QUAN Shuai 

Cite this article as: WANG Y W, SUN M, LIU F H, et al. Value of intratumoral and peritumoral radiomics based on DCE-MRI and DWI in predicting HER-2 status in breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(12): 116-123. DOI:10.12015/issn.1674-8034.2024.12.017.


[Abstract] Objective To explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) based intratumoral and peritumoral radiomics methods in predicting the status of human epidermal growth factor receptor 2 (HER-2) in breast cancer.Materials and Methods Clinical and imaging data of 246 patients with pathologically proven breast cancer were retrospectively analyzed and randomly divided into training group and verification group according to a ratio of 7∶3. ITK-SNAP software was used to manually outline the intratumoral areas of interest, and PHIgo-AK software was used to expand the peritumoral and extract the intratumoral and peritumoral radiomics features. The optimal number of intratumor and peritumor features of DCE-MRI and DWI were selected by max-relevance and min-redundancy (mRMR) algorithm. Radiomics models of single sequence and combined sequence were established respectively, and the prediction efficiency of each model was analyzed by receiver operating characteristic (ROC) curve. The area under the curve (AUC) was calculated to select the model with the highest predictive efficiency. Independent risk factors for predicting HER-2 status were screened from clinical and routine imaging features in the training group through single logistic regression. A fusion model was established by combining the radiomic score (rad-score) of the model with the highest predictive power, and then presented by nomogram. AUC value, decision curve analysis and DCA were used to evaluate the efficacy and clinical value of the model.Results The combined intratumoral and peritumoral imaging model based on DCE-MRI and DWI predicted the AUC value of HER-2 status in the training group and the verification group, which were 0.953 and 0.948, respectively, with the highest efficiency. Tumor maximum diameter is an independent risk factor for distinguishing breast cancer HER-2 status. Finally, the fusion model established by combining rad-score and tumor maximum diameter has good predictive efficacy for breast cancer HER-2 status, with the AUC value of 0.961 in the training group and 0.958 in the verification group.Conclusions The intratumoral and peritumoral radiomic methods based on DCE-MRI and DWI have good value in the prediction of breast cancer HER-2 status.
[Keywords] breast cancer;human epidermal growth factor receptor 2;radiomics;peritumor;magnetic resonance imaging;dynamic contrast-enhanced magnetic resonance imaging;diffusion-weighted imaging

WANG Yuwei1   SUN Min2*   LIU Fenghai2   KANG Liqing2   QUAN Shuai3  

1 Department of Magnetic Resonance Imaging, Cangzhou Central Hospital Affiliated to Hebei Medical University, Cangzhou061000, China

2 Department of Magnetic Resonance Imaging, Cangzhou Central Hospital, Cangzhou061000, China

3 General Electric Pharmaceutical (Shanghai) Co., LTD., Shanghai210000, China

Corresponding author: SUN M, E-mail: 63986578@qq.com

Conflicts of interest   None.

Received  2024-08-27
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.017
Cite this article as: WANG Y W, SUN M, LIU F H, et al. Value of intratumoral and peritumoral radiomics based on DCE-MRI and DWI in predicting HER-2 status in breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(12): 116-123. DOI:10.12015/issn.1674-8034.2024.12.017.

[1]
NIERENGARTEN M B. Global cancer statistics 2022: the report offers a view on disparities in the incidence and mortality of cancer by sex and region worldwide and on the areas needing attention[J/OL]. Cancer, 2024, 130(15): 2568 [2024-08-02]. https://pubmed.ncbi.nlm.nih.gov/39032060/. DOI: 10.1002/cncr.35444.
[2]
PASHA N D, TURNER N C. Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment[J]. Nat Cancer, 2021, 2(7): 680-692. DOI: 10.1038/s43018-021-00229-1.
[3]
TAMIMI R M, COLDITZ G A, HAZRA A, et al. Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer[J]. Breast Cancer Res Treat, 2012, 131(1): 159-167. DOI: 10.1007/s10549-011-1702-0.
[4]
ELSHAZLY A M, GEWIRTZ D A. An overview of resistance to Human epidermal growth factor receptor 2 (Her2) targeted therapies in breast cancer[J]. Cancer Drug Resist, 2022, 5(2): 472-486. DOI: 10.20517/cdr.2022.09.
[5]
MA P, WANG L J, KONG D G, et al. Comparison of clinicopathological features and prognosis of 1560 breast cancer patients with different HER2 expression status[J]. Chinese Journal of Basic and Clinical Studies in General Surgery, 2023, 30(5): 554-560. DOI: 10.7507/1007-9424.202211052.
[6]
DUNTON K, VONDELING G, HANCOCK E, et al. Methods for estimating long-term outcomes for trastuzumab deruxtecan in HER2-positive unresectable or metastatic breast cancer after two or more anti-HER2 therapies[J]. Target Oncol, 2022, 17(6): 655-663. DOI: 10.1007/s11523-022-00923-9.
[7]
CAMERON D, PICCART-GEBHART M J, GELBER R D, et al. 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial[J]. Lancet, 2017, 389(10075): 1195-1205. DOI: 10.1016/S0140-6736(16)32616-2.
[8]
KAMEYAMA H, DONDAPATI P, SIMMONS R, et al. Needle biopsy accelerates pro-metastatic changes and systemic dissemination in breast cancer: implications for mortality by surgery delay[J/OL]. Cell Rep Med, 2023, 4(12): 101330 [2024-06-09]. https://pubmed.ncbi.nlm.nih.gov/38118415/. DOI: 10.1016/j.xcrm.2023.101330.
[9]
LIAN Z W, WANG X, WU Q Y, et al. Association between delays in diagnosis and clinical stage of HER2-positive breast cancer[J]. Chin J Cancer Prev Treat, 2023, 30(1): 43-47. DOI: 10.16073/j.cnki.cjcpt.2023.01.07.
[10]
PAREKH V, JACOBS M A. Radiomics: a new application from established techniques[J]. Expert Rev Precis Med Drug Dev, 2016, 1(2): 207-226. DOI: 10.1080/23808993.2016.1164013.
[11]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[12]
YUE W Y, ZHANG H T, GAO S, et al. Predicting breast cancer subtypes using magnetic resonance imaging based radiomics with automatic segmentation[J]. J Comput Assist Tomogr, 2023, 47(5): 729-737. DOI: 10.1097/RCT.0000000000001474.
[13]
ZHOU J, TAN H N, LI W, et al. Radiomics signatures based on multiparametric MRI for the preoperative prediction of the HER2 status of patients with breast cancer[J]. Acad Radiol, 2021, 28(10): 1352-1360. DOI: 10.1016/j.acra.2020.05.040.
[14]
HWANG K T, KIM Y A, KIM J, et al. The influences of peritumoral lymphatic invasion and vascular invasion on the survival and recurrence according to the molecular subtypes of breast cancer[J]. Breast Cancer Res Treat, 2017, 163(1): 71-82. DOI: 10.1007/s10549-017-4153-4.
[15]
WANG W K, LIN G H, CHEN C M, et al. Value of dynamic enhanced intratumoral MRI combined with a peritumoral radiomics nomogram in preoperatively predicting HER-2 status of breast cancer[J]. Chin Imag J Integr Tradit West Med, 2023, 21(3): 259-264. DOI: 10.3969/j.issn.1672-0512.2023.03.006.
[16]
TÜRKBEY B, THOMASSON D, PANG Y X, et al. The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment[J]. Diagn Interv Radiol, 2010, 16(3): 186-192. DOI: 10.4261/1305-3825.DIR.2537-08.1.
[17]
PARTRIDGE S C, NISSAN N, RAHBAR H, et al. Diffusion-weighted breast MRI: clinical applications and emerging techniques[J]. J Magn Reson Imaging, 2017, 45(2): 337-355. DOI: 10.1002/jmri.25479.
[18]
WOLFF A C, HAMMOND M H, ALLISON K H, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update[J]. Arch Pathol Lab Med, 2018, 142(11): 1364-1382. DOI: 10.5858/arpa.2018-0902-SA.
[19]
OU K P, LUO Y, ZHANG Y R, et al. Early recurrence and metastasis pattern and risk factors of human epidermal growth factor receptor-2 positive breast cancer after surgery[J]. Cancer Progress, 2020, 18(19): 1989-1992. DOI: 10.11877/j.issn.1672-1535.2020.18.19.08.
[20]
PICCART M, PROCTER M, FUMAGALLI D, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY trial: 6 years' follow-up[J]. J Clin Oncol, 2021, 39(13): 1448-1457. DOI: 10.1200/JCO.20.01204.
[21]
SUTHERLAND S, ASHLEY S, MILES D, et al. Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases: the UK experience[J]. Br J Cancer, 2010, 102(6): 995-1002. DOI: 10.1038/sj.bjc.6605586.
[22]
LEE H J, PARK S Y. Reply to 'Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance'[J]. Mod Pathol, 2013, 26(4): 610-611. DOI: 10.1038/modpathol.2013.38.
[23]
YAN M Y, YAO J C, ZHANG X, et al. Machine learning-based model constructed from ultrasound radiomics and clinical features for predicting HER2 status in breast cancer patients with indeterminate (2+) immunohistochemical results[J/OL]. Cancer Med, 2024, 13(3): e6946 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/38234171/. DOI: 10.1002/cam4.6946.
[24]
DU Y, LI F, ZHANG M Q, et al. The emergence of the potential therapeutic targets: ultrasound-based radiomics in the prediction of human epidermal growth factor receptor 2-low breast cancer[J]. Acad Radiol, 2024, 31(7): 2674-2683. DOI: 10.1016/j.acra.2024.01.023.
[25]
DENG Y L, LU Y P, LI X X, et al. Prediction of human epidermal growth factor receptor 2 (HER2) status in breast cancer by mammographic radiomics features and clinical characteristics: a multicenter study[J]. Eur Radiol, 2024, 34(8): 5464-5476. DOI: 10.1007/s00330-024-10607-9.
[26]
NIU S X, JIANG W Y, ZHAO N N, et al. Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI[J]. J Cancer Res Clin Oncol, 2022, 148(1): 97-106. DOI: 10.1007/s00432-021-03822-0.
[27]
FOWLER A M, STRIGEL R M. Clinical advances in PET-MRI for breast cancer[J/OL]. Lancet Oncol, 2022, 23(1): e32-e43 [2024-06-11]. https://pubmed.ncbi.nlm.nih.gov/34973230/. DOI: 10.1016/S1470-2045(21)00577-5.
[28]
WEKKING D, PORCU M, SILVA P D, et al. Breast MRI: clinical indications, recommendations, and future applications in breast cancer diagnosis[J]. Curr Oncol Rep, 2023, 25(4): 257-267. DOI: 10.1007/s11912-023-01372-x.
[29]
MANN R M, CHO N, MOY L. Breast MRI: state of the art[J]. Radiology, 2019, 292(3): 520-536. DOI: 10.1148/radiol.2019182947.
[30]
LIU T T, LIN J L, LOU J J, et al. Clinical application value of multi-parameter MRI radiomics evaluation of HER-2 expression status in invasive breast cancer[J]. J Nanjing Med Univ Nat Sci, 2024, 44(2): 218-227. DOI: 10.7655/NYDXBNSN230584.
[31]
FEHRENBACHER L, CECCHINI R S, GEYER C E, et al. NSABP B-47/NRG oncology phase III randomized trial comparing adjuvant chemotherapy with or without trastuzumab in high-risk invasive breast cancer negative for HER2 by FISH and with IHC 1+ or 2[J]. J Clin Oncol, 2020, 38(5): 444-453. DOI: 10.1200/JCO.19.01455.
[32]
EIGER D, AGOSTINETTO E, SAÚDE-CONDE R, et al. The exciting new field of HER2-low breast cancer treatment[J/OL]. Cancers, 2021, 13(5): 1015 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/33804398/. DOI: 10.3390/cancers13051015.
[33]
ZOU Z Q, HUANG Y F, YANG Y. Diagnostic value analysis of multimodal magnetic resonance imaging combined with prognostic factors in HER-2 low expression breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(11): 48-55. DOI: 10.12015/issn.1674-8034.2023.11.009.
[34]
RAMTOHUL T, DJERROUDI L, LISSAVALID E, et al. Multiparametric MRI and radiomics for the prediction of HER2-zero, -low, and-positive breast cancers[J/OL]. Radiology, 2023, 308(2): e222646 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/37526540/. DOI: 10.1148/radiol.222646.
[35]
SEMENZA G L. The hypoxic tumor microenvironment: a driving force for breast cancer progression[J]. Biochim Biophys Acta, 2016, 1863(3): 382-391. DOI: 10.1016/j.bbamcr.2015.05.036.
[36]
UEMATSU T. Focal breast edema associated with malignancy on T2-weighted images of breast MRI: peritumoral edema, prepectoral edema, and subcutaneous edema[J]. Breast Cancer, 2015, 22(1): 66-70. DOI: 10.1007/s12282-014-0572-9.
[37]
LI C L, SONG L R, YIN J D. Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER-2 and ki-67 status[J]. J Magn Reson Imaging, 2021, 54(3): 703-714. DOI: 10.1002/jmri.27651.
[38]
LI C L, YIN J D. Radiomics nomogram based on radiomics score from multiregional diffusion-weighted MRI and clinical factors for evaluating HER-2 2+ status of breast cancer[J/OL]. Diagnostics, 2021, 11(8): 1491 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/34441425/. DOI: 10.3390/diagnostics11081491.
[39]
ZHOU J, YU X, WU Q X, et al. The value of intratumoral and peritumoral radiomics features of multi-parameter MRI in evaluation of the status of human epithelial growth factor receptor 2 in breast cancer[J]. Chin J Radiol, 2023, 57(12): 1338-1345. DOI: 10.3760/cma.j.cn112149-20221209-00992.
[40]
DING J, CHEN S L, SERRANO SOSA M, et al. Optimizing the peritumoral region size in radiomics analysis for sentinel lymph node status prediction in breast cancer[J/OL]. Acad Radiol, 2022, 29(Suppl 1): S223-S228 [2024-06-15]. https://pubmed.ncbi.nlm.nih.gov/33160860/. DOI: 10.1016/j.acra.2020.10.015.
[41]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 80 [2024-06-15]. https://pubmed.ncbi.nlm.nih.gov/28693537/. DOI: 10.1186/s13058-017-0862-1.
[42]
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2024-06-15]. https://pubmed.ncbi.nlm.nih.gov/31002322/. DOI: 10.1001/jamanetworkopen.2019.2561.
[43]
ZHANG C M, DING Z M, CHEN P, et al. Prediction of HER-2 expression in breast cancer patients based on DCE-MRI intratumor and peritumoral imaging combined with TIC typing and Ki-67[J]. Chin J Magn Reson Imag, 2023, 14(4): 68-75. DOI: 10.12015/issn.1674-8034.2023.04.012.
[44]
MING J, CHEN Y, LIU Y, et al. Value of preoperative prediction of Ki-67 expression in breast cancer based on DCE-MRI intratumoral combined with peritumoral radiomics model[J]. Chin J Magn Reson Imag, 2022, 13(10): 132-137, 149. DOI: 10.12015/issn.1674-8034.2022.10.020.
[45]
XIN L M, MIN G, WEI W S, et al. The diagnostic value of a nomogram based on clinical imaging and MRIBased radiomic features in triple-negative breast cancer[J/OL]. Curr Med Imaging, 2023 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/37881087/. DOI: 10.2174/0115734056227812231016112438.
[46]
CHEN Y S, LI J P, ZHANG J, et al. Radiomic nomogram for predicting axillary lymph node metastasis in patients with breast cancer[J]. Acad Radiol, 2024, 31(3): 788-799. DOI: 10.1016/j.acra.2023.10.026.
[47]
FANG C Y, ZHANG J T, LI J Z, et al. Clinical-radiomics nomogram for identifying HER2 status in patients with breast cancer: a multicenter study[J/OL]. Front Oncol, 2022, 12: 922185 [2024-06-19]. https://pubmed.ncbi.nlm.nih.gov/36158700/. DOI: 10.3389/fonc.2022.922185.

PREV Application value of three- dimensional pseudocontinuous arterial spin labeling in diagnosing cervical small lymph node metastases in nasopharyngeal carcinoma
NEXT MRI radiomics based on deep learning 3D super-resolution reconstruction technology for predicting the efficacy of TACE combined with molecular targeted drugs in the treatment of unresectable hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn