Share:
Share this content in WeChat
X
Clinical Article
Application of amide proton transfer imaging combined with apparent diffusion coefficient in the differentiation of benign and malignant soft tissue tumors
WU Lifang  LIN Yantao  TANG Yilin  OUYANG Lin  GENG Yuehua  CHEN Yi 

Cite this article as: WU L F, LIN Y T, TANG Y L, et al. Application of amide proton transfer imaging combined with apparent diffusion coefficient in the differentiation of benign and malignant soft tissue tumors[J]. Chin J Magn Reson Imaging, 2024, 15(12): 138-142. DOI:10.12015/issn.1674-8034.2024.12.020.


[Abstract] Objective To investigate the application value of amide proton transfer (APT) imaging combined with apparent diffusion coefficient (ADC) in the differential diagnosis of benign and malignant soft tissue tumors.Materials and Methods Fifty-five patients with soft tissue tumors confirmed by pathology were retrospectively analyzed. There were 31 benign tumors and 24 malignant tumors. All patients underwent magnetic resonance APT and diffusion weighted imaging (DWI) examination before operation. Two observers measured the ADC value of DWI and the asymmetric magnetization transfer ratio of APT [MTRasym (3.5 ppm), and The APT value is abbreviated]. The differences of ADC and APT values between benign and malignant tumors were compared. Receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic efficacy of ADC, APT and their combination in differentiating benign and malignant soft tissue tumors.Results The APT values of benign tumors were less than those of malignant tumors [1.90%+1.06% vs. 3.29%+0.94%], the difference was statistically significant (t=-5.07, P<0.01). The ADC values of benign tumors were higher than those of malignant tumors [(1.70±0.54)×10-3 mm2/s vs. (1.15±0.56)×10-3 mm2/s], and the difference was statistically significant (t=3.68, P<0.01). The area under the curve (AUC), sensitivity and specificity of ADC, APT and their combination were 0.778 [95% confidence interval (CI): 0.646-0.879], 62.5%, 87.1%; 0.838 (95% CI: 0.714-0.924), 70.8%, 90.3%; 0.895 (95% CI: 0.783-0.962), 83.3%, 87.1%, respectively. There was no significant difference in AUC between ADC and APT (Z=0.664, P>0.05). The AUC of the combined diagnosis of the two was higher than that of ADC (Z=2.086, P<0.05), but there was no statistically significant difference in AUC with APT (Z=1.394, P>0.05) alone.Conclusions Both APT and ADC can be used for the differential diagnosis of benign and malignant soft tissue tumors. The combination of APT and ADC can improve the diagnostic efficiency.
[Keywords] soft tissue tumors;magnetic resonance imaging;amide proton transfer imaging;apparent diffusion coefficient;diffusion-weighted imaging

WU Lifang   LIN Yantao   TANG Yilin   OUYANG Lin   GENG Yuehua   CHEN Yi*  

Department of Radiology, the 909th Hospital (Dongnan Hospital of Xiamen University), Zhangzhou363000, China

Corresponding author: CHEN Y, E-mail: kiki0112@sina.com

Conflicts of interest   None.

Received  2024-09-11
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.020
Cite this article as: WU L F, LIN Y T, TANG Y L, et al. Application of amide proton transfer imaging combined with apparent diffusion coefficient in the differentiation of benign and malignant soft tissue tumors[J]. Chin J Magn Reson Imaging, 2024, 15(12): 138-142. DOI:10.12015/issn.1674-8034.2024.12.020.

[1]
VON MEHREN M, KANE J M, AGULNIK M, et al. Soft tissue sarcoma, version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(7): 815-833. DOI: 10.6004/jnccn.2022.0035.
[2]
ZHAN J, HAO D, WANG D, et al. Standard diffusion-weighted, intravoxel incoherent motion, and dynamic contrast-enhanced MRI of musculoskeletal tumours: correlations with Ki67 proliferation status[J/OL]. Clin Radiol, 2021, 76(12): 941.e11-941.941.e18 [2024-01-12]. https://pubmed.ncbi.nlm.nih.gov/34579866/. DOI: 10.1016/j.crad.2021.09.004.
[3]
RAMAKRISHNAN K, LEVY N, GOLDBACH A, et al. Imaging of soft tissue sarcomas of the extremities with radiologic-pathologic correlation[J]. Curr Probl Diagn Radiol, 2022, 51(6): 868-877. DOI: 10.1067/j.cpradiol.2022.04.005.
[4]
WANG C J, ZHANG Z Y, DOU Y P, et al. Development of clinical and magnetic resonance imaging-based radiomics nomograms for the differentiation of nodular fasciitis from soft tissue sarcoma[J]. Acta Radiol, 2023, 64(9): 2578-2589. DOI: 10.1177/02841851231188473.
[5]
MAZTI A, IDRISSI M E, IBRAHIMI A E, et al. How can a multidisciplinary approach improve prognosis of soft-tissue sarcomas of extremities?[J/OL]. Int J Surg Oncol, 2021, 2021: 8871557 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/33833875/. DOI: 10.1155/2021/8871557.
[6]
LIU C, WANG M, CHEN T J, et al. Comparative analysis of clinical utility of core needle biopsy for bone and soft tissue malignant tumors[J]. J Pract Orthop, 2022, 28(9): 793-796, 810. DOI: 10.3760/cma.j.issn.0529-5807.2013.03.004.
[7]
KIEFER J, MUTSCHLER M, KURZ P, et al. Accuracy of core needle biopsy for histologic diagnosis of soft tissue sarcoma[J/OL]. Sci Rep, 2022, 12(1): 1886 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/35115589/. DOI: 10.1038/s41598-022-05752-4.
[8]
DE ALMEIDA G B, PASCUZZO R, MAMBRIN F, et al. The role of amide proton transfer (APT)-weighted imaging in glioma: assessment of tumor grading, molecular profile and survival in different tumor components[J/OL]. Cancers, 2024, 16(17): 3014 [2024-09-01]. https://pubmed.ncbi.nlm.nih.gov/39272871/. DOI: 10.3390/cancers16173014.
[9]
SOTIRIOS B, DEMETRIOU E, TOPRICEANU C C, et al. The role of APT imaging in gliomas grading: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2020, 133: 109353 [2024-04-11]. https://pubmed.ncbi.nlm.nih.gov/33120241/. DOI: 10.1016/j.ejrad.2020.109353.
[10]
WANG X Y, ZHANG Y, CHENG J L, et al. Comparison of the efficacy of amide proton transfer-weighted imaging and time-dependent diffusion MRI for the diagnosis of malignant breast lesions[J]. Chin J Radiol, 2024, 58(6): 611-619. DOI: 10.3760/cma.j.cn112149-20230910-00176.
[11]
MENG N, WANG X J, SUN J, et al. A comparative study of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in the diagnosis and evaluation of breast cancer[J]. Eur Radiol, 2021, 31(3): 1707-1717. DOI: 10.1007/s00330-020-07169-x.
[12]
XU X H, CHANG L Y, WU G T, et al. Application of MR amide proton transfer imaging and apparent diffusion coefficient in preoperative pathological grade assessment of bladder cancer[J]. Chin J Magn Reson Imag, 2023, 14(11): 97-102. DOI: 10.12015/issn.1674-8034.2023.11.016.
[13]
HOU G R, WANG C, LI L L, et al. Comparison of 3D amide proton transfer imaging and intravoxel incoherent motion imaging in the diagnosis of prostate cancer[J]. Chin J Magn Reson Imag, 2023, 14(5): 139-144. DOI: 10.12015/issn.1674-8034.2023.05.024.
[14]
XU Q H, SONG Q L, WANG Y, et al. Amide proton transfer weighted combined with diffusion kurtosis imaging for predicting lymph node metastasis in cervical cancer[J]. Magn Reson Imaging, 2024, 106: 85-90. DOI: 10.1016/j.mri.2023.12.001.
[15]
HE Y L, LI Y, LIN C Y, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted MRI for cervical cancer: a preliminary study[J]. J Magn Reson Imaging, 2019, 50(4): 1318-1325. DOI: 10.1002/jmri.26710.
[16]
LV C L, XUE X L, HUANG M G, et al. The dynamic contrast enhanced-magnetic resonance imaging and diffusion-weighted imaging features of alveolar soft part sarcoma[J]. Quant Imaging Med Surg, 2023, 13(10): 7269-7280. DOI: 10.21037/qims-23-743.
[17]
GOWDA P, BAJAJ G, SILVA F D, et al. Does the apparent diffusion coefficient from diffusion-weighted MRI imaging aid in the characterization of malignant soft tissue tumors and sarcomas[J]. Skeletal Radiol, 2023, 52(8): 1475-1484. DOI: 10.1007/s00256-023-04289-5.
[18]
LI X W, HU Y W, XIE Y X, et al. Whole-tumor histogram analysis of diffusion-weighted imaging and dynamic contrast-enhanced MRI for soft tissue sarcoma: correlation with HIF-1alpha expression[J]. Eur Radiol, 2023, 33(6): 3961-3973. DOI: 10.1007/s00330-022-09296-z.
[19]
LEE S Y, JEE W H, JUNG J Y, et al. Differentiation of malignant from benign soft tissue tumours: use of additive qualitative and quantitative diffusion-weighted MR imaging to standard MR imaging at 3.0 T[J]. Eur Radiol, 2016, 26(3): 743-754. DOI: 10.1007/s00330-015-3878-x.
[20]
CHHABRA A, ASHIKYAN O, SLEPICKA C, et al. Conventional MR and diffusion-weighted imaging of musculoskeletal soft tissue malignancy: correlation with histologic grading[J]. Eur Radiol, 2019, 29(8): 4485-4494. DOI: 10.1007/s00330-018-5845-9.
[21]
WANG H J, CAI Q, HUANG Y P, et al. Amide proton transfer-weighted MRI in predicting histologic grade of bladder cancer[J]. Radiology, 2022, 305(1):127-134. DOI: 10.1148/radiol.211804.
[22]
PADHANI A R, LIU G Y, KOH D M, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations[J]. Neoplasia, 2009, 11(2): 102-125. DOI: 10.1593/neo.81328.
[23]
BAI Y, MA X Y, SHI D P, et al. Clinical applications of amide proton transfer magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2016, 7(4): 259-264. DOI: 10.12015/issn.1674-8034.2016.04.004.
[24]
LIU X Y, HE Y L, XUE H D, et al. Advanced application of amide proton transfer imaging in female reproductive system[J]. Chin J Magn Reson Imag, 2023, 14(1): 198-202. DOI: 10.12015/issn.1674-8034.2023.01.037.
[25]
MILOT L. Amide proton transfer-weighted MRI: insight into cancer cell biology[J]. Radiology, 2022, 305(1): 135-136. DOI: 10.1148/radiol.221376.
[26]
JIA X, LAI C, MA X H. Progress in clinical research of amide proton transfer imaging[J]. Zhongguo Yi Liao Qi Xie Za Zhi, 2020, 44(2): 185-188. DOI: 10.3969/j.issn.1671-7104.2020.02.018.
[27]
WANG T T, SHE Y L, YANG Y, et al. Radiomics for survival risk stratification of clinical and pathologic stage IA pure-solid non-small cell lung cancer[J]. Radiology, 2022, 302(2): 425-434. DOI: 10.1148/radiol.2021210109.
[28]
ZHUO Z Z, QU L Y, ZHANG P, et al. Prediction of H3K27M-mutant brainstem glioma by amide proton transfer-weighted imaging and its derived radiomics[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4426-4436. DOI: 10.1007/s00259-021-05455-4.
[29]
SHETH V R. Editorial for "amide proton transfer-weighted imaging combined with intravoxel incoherent motion for evaluating microsatellite instability in endometrial cancer" [J]. J Magn Reson Imaging, 2023, 57(2): 506-507. DOI: 10.1002/jmri.28302.
[30]
LI J L, XU Y, XIANG Y S, et al. The value of amide proton transfer MRI in the diagnosis of malignant and benign urinary bladder lesions: comparison with diffusion-weighted imaging[J]. J Magn Reson Imaging, 2024, 60(3): 1124-1133. DOI: 10.1002/jmri.29199.
[31]
ZHANG N, KANG J Y, WANG H L, et al. Differentiation of fibroadenomas versus malignant breast tumors utilizing three-dimensional amide proton transfer weighted magnetic resonance imaging[J]. Clin Imaging, 2022, 81: 15-23. DOI: 10.1016/j.clinimag.2021.09.002.
[32]
ZHOU J Y, JIA G. Editorial for "amide proton transfer-weighted imaging could complement apparent diffusion coefficient for more lesion characterization in transition zone of the prostate"[J]. J Magn Reson Imaging, 2022, 56(5): 1320-1321. DOI: 10.1002/jmri.28224.
[33]
XU Y, WAN Q X, REN X H, et al. Amide proton transfer-weighted MRI for renal tumors: comparison with diffusion-weighted imaging[J]. Magn Reson Imaging, 2024, 106: 104-109. DOI: 10.1016/j.mri.2023.12.002.
[34]
LI S J, LIU J, ZHANG Z X, et al. Added-value of 3D amide proton transfer MRI in assessing prognostic factors of cervical cancer: a comparative study with multiple model diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2023, 13(12): 8157-8172. DOI: 10.21037/qims-23-324.

PREV Discrimination and diagnosis of between perianal-first-onset and non-perianal-first-onset fistulizing Crohn,s disease based on Van Assche score and MAGNIFI-CD score
NEXT Application of IDEAL-IQ to quantitatively evaluate fat deposition and iron overload in abdominal parenchymal organs in rats with type 2 diabetes mellitus
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn