Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging in epileptic thalamus
XIA Shuyuan  WANG Wen  REN Qingfa  LIU Yuwei  GONG He  LIU Miaomiao  LI Xianglin 

Cite this article as: XIA S Y, WANG W, REN Q F, et al. Research progress of magnetic resonance imaging in epileptic thalamus[J]. Chin J Magn Reson Imaging, 2024, 15(12): 165-170. DOI:10.12015/issn.1674-8034.2024.12.025.


[Abstract] Epilepsy is a chronic nervous system disease caused by abnormal discharge of brain neurons. The main clinical symptoms include convulsions, loss of consciousness, myoclonus, decreased muscle tone and prolonged muscle contraction duration. The thalamus is a key hub in the epilepsy neural network, which is involved in the onset, transmission and other important stages of epilepsy. MRI technology can explore the changes of brain structure, functional activity and neural metabolites, which provides an important non-invasive tool for the study of nervous system diseases, and is of great significance for the study of neurological changes in patients with epilepsy. Therefore, this paper reviews the research status of multimodal MRI techniques in the thalamus of epileptic patients, aiming to further understand the pathological mechanism of epilepsy and develop diagnosis and treatment strategies.
[Keywords] epilepsy;thalamus;structural magnetic resonance imaging;magnetic resonance spectroscopy;magnetic resonance imaging;blood oxygenation level dependent

XIA Shuyuan1, 2   WANG Wen1   REN Qingfa1   LIU Yuwei2   GONG He2   LIU Miaomiao2   LI Xianglin1*  

1 Department of Radiology, Binzhou Medical University Hospital, Binzhou256600, China

2 School of Medical Imaging, Binzhou Medical University, Yantai264003, China

Corresponding author: LI X L, E-mail: xlli@bzmc.edu.cn

Conflicts of interest   None.

Received  2024-09-20
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.025
Cite this article as: XIA S Y, WANG W, REN Q F, et al. Research progress of magnetic resonance imaging in epileptic thalamus[J]. Chin J Magn Reson Imaging, 2024, 15(12): 165-170. DOI:10.12015/issn.1674-8034.2024.12.025.

[1]
BEGHI E. The epidemiology of epilepsy[J]. Neuroepidemiology, 2020, 54(2): 185-191. DOI: 10.1159/000503831.
[2]
ASADI-POOYA A A, BRIGO F, LATTANZI S, et al. Adult epilepsy[J]. Lancet, 2023, 402(10399): 412-424. DOI: 10.1016/S0140-6736(23)01048-6.
[3]
HU T, ZHANG J, WANG J, et al. Advances in epilepsy: Mechanisms, clinical trials, and drug therapies[J]. J Med Chem, 2023, 66(7): 4434-4467. DOI: 10.1021/acs.jmedchem.2c01975.
[4]
RHO J M, BOISON D. The metabolic basis of epilepsy[J]. Nat Rev Neurol, 2022, 18(6): 333-347. DOI: 10.1038/s41582-022-00651-8.
[5]
PIPER R J, RICHARDSON R M, WORRELL G, et al. Towards network-guided neuromodulation for epilepsy[J]. Brain, 2022, 145(10): 3347-3362. DOI: 10.1093/brain/awac234.
[6]
GALOVIC M. Reframing lesional epilepsy as a network disease[J]. JAMA Neurol, 2023, 80(9): 889-890. DOI: 10.1001/jamaneurol.
[7]
SHINE J M, LEWIS L D, GARRETT D D, et al. The impact of the human thalamus on brain-wide information processing[J]. Nat Rev Neurosci, 2023, 24(7): 416-430. DOI: 10.1038/s41583-023-00701-0.
[8]
EDMONDS B, MIYAKOSHI M, GIANMARIA REMORE L, et al. Characteristics of ictal thalamic EEG in pediatric-onset neocortical focal epilepsy[J]. Clin Neurophysiol, 2023, 154: 116-125. DOI: 10.1016/j.clinph.2023.07.007.
[9]
MANMATHARAYAN A, KOGAN M, MATIAS C, et al. Automated subfield volumetric analysis of amygdala, hippocampus, and thalamic nuclei in mesial temporal lobe epilepsy[J/OL]. World Neurosurg X, 2023, 19: 100212 [2024-09-20]. https://doi.org/10.1016/j.wnsx.2023.100212. DOI: 10.1016/j.wnsx.2023.100212.
[10]
KAZIS D, PETRIDIS F, CHATZIKONSTANTINOU S, et al. Gray matter changes in juvenile myoclonic epilepsy. A voxel-wise meta-analysis[J/OL]. Medicina (Kaunas), 2021, 57(11): 1136 [2024-09-20]. https://doi.org/10.3390/medicina57111136. DOI: 10.3390/medicina57111136.
[11]
ZHANG J, WU D, YANG H, et al. Correlations between structural brain abnormalities, cognition and electroclinical characteristics in patients with juvenile myoclonic epilepsy[J/OL]. Front Neurol, 2022, 13: 883078 [2024-09-20]. https://doi.org/10.3389/fneur.2022.883078. DOI: 10.3389/fneur.2022.883078.
[12]
OGREN J A, ALLEN L A, ROY B, et al. Regional variation in brain tissue texture in patients with tonic-clonic seizures[J/OL]. PLoS One, 2022, 17(9): e0274514 [2024-09-20]. https://doi.org/10.1371/journal.pone.0274514. DOI: 10.1371/journal.pone.0274514
[13]
HE H, BIN G, WANG T, et al. Patterns of gray matter abnormalities in idiopathic generalized epilepsy: A meta-analysis of voxel-based morphology studies[J/OL]. Plos One, 2017, 12(1): e0169076 [2024-09-20]. https://doi.org/10.1371/journal.pone.0169076. DOI: 10.1371/journal.pone.0169076.
[14]
LUCAS A, MOUCHTARIS S, TRANQUILLE A, et al. Mapping hippocampal and thalamic atrophy in epilepsy: A 7-T magnetic resonance imaging study[J]. Epilepsia, 2024, 65(4): 1092-1106. DOI: 10.1111/epi.17908.
[15]
ATASOY B, YAMAN KULA A, BALSAK S, et al. Role of diffusion tensor imaging in the evaluation of white matter integrity in idiopathic intracranial hypertension[J]. Headache, 2024, 64(9): 1076-1087. DOI: 10.1111/head.14825.
[16]
EKMEKCI B, BULUT H T, GUMUSTAS F, et al. The relationship between white matter abnormalities and cognitive functions in new-onset juvenile myoclonic epilepsy[J]. Epilepsy Behav, 2016, 62: 166-170. DOI: 10.1016/j.yebeh.2016.07.015.
[17]
KNAKE S, ROTH C, BELKE M, et al. Microstructural white matter changes and their relation to neuropsychological deficits in patients with juvenile myoclonic epilepsy[J]. Epilepsy Behav, 2017, 76: 56-62. DOI: 10.1016/j.yebeh.2017.08.031.
[18]
PARK K M, LEE B I, SHIN K J, et al. Pivotal role of subcortical structures as a network hub in focal epilepsy: Evidence from graph theoretical analysis based on diffusion-tensor imaging[J]. J Clin Neurol, 2019, 15(1): 68-76. DOI: 10.3988/jcn.2019.15.1.68.
[19]
ALIZADEH M, KOZLOWSKI L, MULLER J, et al. Hemispheric regional based analysis of diffusion tensor imaging and diffusion tensor tractography in patients with temporal lobe epilepsy and correlation with patient outcomes[J/OL]. Sci Rep, 2019, 9(1): 215 [2024-09-20]. https://doi.org/10.1038/s41598-018-36818-x. DOI: 10.1038/s41598-018-36818-x.
[20]
ZHANG Y, JIANG L, ZHANG D, et al. Thalamocortical structural connectivity abnormalities in drug-resistant generalized epilepsy: A diffusion tensor imaging study[J/OL]. Brain Res, 2020, 1727: 146558 [2024-09-20]. DOI: 10.1016/j.brainres.2019.146558.
[21]
LIU G, LYU G, YANG N, et al. Abnormalities of diffusional kurtosis imaging and regional homogeneity in idiopathic generalized epilepsy with generalized tonic-clonic seizures[J]. Exp Ther Med, 2019, 17(1): 603-612. DOI: 10.3892/etm.2018.7018.
[22]
ZHAO P, MA X, BAN C, et al. Brain diffusion weighted imaging study of Mongolian idiopathic epilepsy[J/OL]. J Healthc Eng, 2022, 2022: 6978116 [2024-09-20]. https://doi.org/10.1155/2022/6978116. DOI: 10.1155/2022/6978116.
[23]
BERGER A, CERRA M, JORIS V, et al. Identifying responders to vagus nerve stimulation based on microstructural features of thalamocortical tracts in drug-resistant epilepsy[J/OL]. Neurotherapeutics, 2024, 21(5): e00422 [2024-12-06]. https://doi.org/10.1016/j.neurot.2024.e00422. DOI: 10.1016/j.neurot.2024.e00422.
[24]
THOMSON A R, HWA H, PASANTA D, et al. The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood[J/OL]. Cereb Cortex, 2024, 34(3): bhae046 [2024-09-20]. https://doi.org/10.1093/cercor/bhae046. DOI: 10.1093/cercor/bhae046.
[25]
DU Y, CHEN L, YAN M C, et al. Neurometabolite levels in the brains of patients with autism spectrum disorders: A meta-analysis of proton magnetic resonance spectroscopy studies (N = 1501)[J]. Mol Psychiatry, 2023, 28(7): 3092-3103. DOI: 10.1038/s41380-023-02079-y.
[26]
OKADA T, FUJIMOTO K, FUSHIMI Y, et al. Neuroimaging at 7 Tesla: a pictorial narrative review[J]. Quant Imaging Med Surg, 2022, 12(6): 3406-3435. DOI: 10.21037/qims-21-969.
[27]
KILIC H, YILMAZ K, ASGAROVA P, et al. Electrical status epilepticus in sleep: The role of thalamus in etiopathogenesis[J]. Seizure, 2021, 93: 44-50. DOI: 10.1016/j.seizure.2021.10.010.
[28]
TAN Z, LONG X, TIAN F, et al. Alterations in brain metabolites in patients with epilepsy with impaired consciousness: A case-control study of interictal multivoxel (1)H-MRS findings[J]. AJNR Am J Neuroradiol, 2019, 40(2): 245-252. DOI: 10.3174/ajnr.A5944.
[29]
DERBYSHIRE E, OBEID R. Choline, neurological development and brain function: A systematic review focusing on the first 1000 days[J/OL]. Nutrients, 2020, 12(6): 1731 [2024-09-20]. https://doi.org/10.3390/nu12061731. DOI: 10.3390/nu12061731.
[30]
YILDIRIM F, AYDIN Z, SAKCI Z, et al. Investigation of patients with eye closure sensitive epilepsy with magnetic resonance spectroscopy[J]. Clin EEG Neurosci, 2022, 53(1): 45-53. DOI: 10.1177/15500594211040953.
[31]
HYPPONEN J, PAANILA V, AIKIA M, et al. Progressive myoclonic epilepsy type 1 (EPM1) patients present with abnormal (1)H MRS brain metabolic profiles associated with cognitive function[J/OL]. Neuroimage Clin, 2023, 39: 103459 [2024-09-20]. https://doi.org/10.1016/j.nicl.2023.103459. DOI: 10.1016/j.nicl.2023.103459.
[32]
BARTNIK-OLSON B L, DING D, HOWE J, et al. Glutamate metabolism in temporal lobe epilepsy as revealed by dynamic proton MRS following the infusion of [U(13)-C] glucose[J]. Epilepsy Res, 2017, 136: 46-53. DOI: 10.1016/j.eplepsyres.2017.07.010.
[33]
SARLO G L, HOLTON K F. Brain concentrations of glutamate and GABA in human epilepsy: A review[J]. Seizure, 2021, 91: 213-227. DOI: 10.1016/j.seizure.2021.06.028.
[34]
TAKADO Y, TAKUWA H, SAMPEI K, et al. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice[J]. Journal of Cerebral Blood Flow & Metabolism, 2021, 42(1): 197-212. DOI: 10.1177/0271678X211045449.
[35]
DOELKEN M T, MENNECKE A, STADLBAUER A, et al. Multi-voxel magnetic resonance spectroscopy at 3T in patients with idiopathic generalised epilepsy[J]. Seizure, 2010, 19(8): 485-492. DOI: 10.1016/j.seizure.2010.07.005.
[36]
HATTINGEN E, LUCKERATH C, PELLIKAN S, et al. Frontal and thalamic changes of GABA concentration indicate dysfunction of thalamofrontal networks in juvenile myoclonic epilepsy[J]. Epilepsia, 2014, 55(7): 1030-1037. DOI: 10.1111/epi.12656
[37]
HELMS G, CIUMAS C, KYAGA S, et al. Increased thalamus levels of glutamate and glutamine (Glx) in patients with idiopathic generalised epilepsy[J]. J Neurol Neurosurg Psychiatry, 2006, 77(4): 489-494. DOI: 10.1136/jnnp.2005.074682.
[38]
HE C, LIU P, WU Y, et al. Gamma-aminobutyric acid (GABA) changes in the hippocampus and anterior cingulate cortex in patients with temporal lobe epilepsy[J/OL]. Epilepsy Behav, 2021, 115: 107683 [2024-09-20]. https://doi.org/10.1016/j.yebeh.2020.107683. DOI: 10.1016/j.yebeh.2020.107683.
[39]
HUANG Y, WEI P-H, XU L, et al. Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter[J/OL]. Nature Communications, 2023, 14(1): 3414 [2024-09-20]. https://doi.org/10.1038/s41467-023-39067-3. DOI: 10.1038/s41467-023-39067-3.
[40]
ROCCA M A, SCHOONHEIM M M, VALSASINA P, et al. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective[J/OL]. Neuroimage Clin, 2022, 35: 103076 [2024-09-20]. https://doi.org/10.1016/j.nicl.2022.103076. DOI: 10.1016/j.nicl.2022.103076.
[41]
LI Z, HOU X, LU Y, et al. Study of brain network alternations in non-lesional epilepsy patients by BOLD-fMRI[J/OL]. Front Neurosci, 2022, 16: 1031163 [2024-09-20]. https://doi.org/10.3389/fnins.2022.1031163. DOI: 10.3389/fnins.2022.1031163.
[42]
YU Q Q, LIU G P, XU Q, et al. Uncoupling between functional connectivity density and amplitude of low frequency fluctuation in childhood absence epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(7): 75-79, 89. DOI: 10.12015/issn.1674-8034.
[43]
SONG C R, ZHANG X N, ZHANG Y, et al. Changes of intrinsic brain activity in mesial temporal lobe epilepsy patients complicated with hippocampal sclerosis[J]. Chinese Journal of Medical Imaging Technology, 2023, 39(7): 987-992. DOI: 10.13929/j.issn.1003-3289.2023.07.007.
[44]
ZHONG J, TAN G, WANG H, et al. Excessively increased thalamocortical connectivity and poor initial antiseizure medication response in epilepsy patients[J/OL]. Front Neurol, 2023, 14: 1153563 [2024-12-06]. https://doi.org/10.3389/fneur.2023.1153563. DOI: 10.3389/fneur.2023.1153563.
[45]
CHEN Y, FALLON N, KREILKAMP B A K, et al. Probabilistic mapping of thalamic nuclei and thalamocortical functional connectivity in idiopathic generalised epilepsy[J]. Hum Brain Mapp, 2021, 42(17): 5648-5664. DOI: 10.1002/hbm.25644.
[46]
TAN G, LI X, NIU R, et al. Functional connectivity of the thalamocortical circuit in patients with seizure relapse after antiseizure medication withdrawal[J]. Epilepsia, 2021, 62(10): 2463-2473. DOI: 10.1111/epi.17014.
[47]
GONG J, JIANG S, LI Z, et al. Distinct effects of the basal ganglia and cerebellum on the thalamocortical pathway in idiopathic generalized epilepsy[J]. Hum Brain Mapp, 2021, 42(11): 3440-3449. DOI: 10.1002/hbm.25444.
[48]
QIN Y, JIANG S, ZHANG Q, et al. BOLD-fMRI activity informed by network variation of scalp EEG in juvenile myoclonic epilepsy[J/OL]. Neuroimage Clin, 2019, 22: 101759 [2024-09-20]. https://doi.org/10.1016/j.nicl.2019.101759. DOI: 10.1016/j.nicl.2019.101759.
[49]
MANKINEN K, IPATTI P, HARILA M, et al. Reading, listening and memory-related brain activity in children with early-stage temporal lobe epilepsy of unknown cause-an fMRI study[J]. Eur J Paediatr Neurol, 2015, 19(5): 561-571. DOI: 10.1016/j.ejpn.2015.05.001.
[50]
TRIMMEL K, VAN GRAAN A L, CACIAGLI L, et al. Left temporal lobe language network connectivity in temporal lobe epilepsy[J]. Brain, 2018, 141(8): 2406-2418. DOI: 10.1093/brain/awy164.
[51]
O'MUIRCHEARTAIGH J, VOLLMAR C, BARKER G J, et al. Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy[J]. Brain, 2012, 135(Pt 12): 3635-3644. DOI: 10.1093/brain/aws296.

PREV Neuroimaging characteristics and genetic mechanisms of autism spectrum disorder: The current status and prospects of multimodal data integration
NEXT Research progress of free water diffusion tensor imaging in neurodegenerative diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn