Share:
Share this content in WeChat
X
Review
Research progress of free water diffusion tensor imaging in neurodegenerative diseases
SUN Xuan  WANG Bingbing  BAI Yan  WU Yaping  WANG Meiyun 

Cite this article as: SUN X, WANG B B, BAI Y, et al. Research progress of free water diffusion tensor imaging in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2024, 15(12): 171-175. DOI:10.12015/issn.1674-8034.2024.12.026.


[Abstract] As people live longer, the prevalence of neurodegenerative diseases with aging as a major risk factor is also increasing, which leads to serious medical and socioeconomic problems. Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that can noninvasively detect brain microstructure changes, and is widely used in clinical and research of neurodegenerative diseases. However, due to the partial volume effect and other reasons, the accuracy of DTI measurement may be affected. Free water diffusion tensor imaging (FW-DTI) not only makes up for the above deficiencies to a large extent, but also enhances the sensitivity of standard DTI indicators to neurodegenerative diseases. This article will review the current research progress of FW-DTI technology in neurodegenerative diseases, in order to provide new ideas for future research.
[Keywords] neurodegenerative diseases;Alzheimer's disease;Parkinson's disease;free water diffusion tensor imaging;magnetic resonance imaging

SUN Xuan1, 2   WANG Bingbing2   BAI Yan2, 3   WU Yaping2, 3   WANG Meiyun2, 3*  

1 Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou450003, China

3 Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou450046, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2024-09-04
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.026
Cite this article as: SUN X, WANG B B, BAI Y, et al. Research progress of free water diffusion tensor imaging in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2024, 15(12): 171-175. DOI:10.12015/issn.1674-8034.2024.12.026.

[1]
KAMAGATA K, ANDICA C, KATO A, et al. Diffusion magnetic resonance imaging-based biomarkers for neurodegenerative diseases[J/OL]. Int J Mol Sci, 2021, 22(10): 5216 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/34069159/. DOI: 10.3390/ijms22105216.
[2]
XU N, LIU Y F, GUO X B, et al. Advances in the application of MRI diffusion imaging technology in the research of Alzheimer's disease[J]. Radiol Practice, 2021, 36(9): 1175-1178. DOI: 10.13609/j.cnki.1000-0313.2021.09.019.
[3]
PASTERNAK O, SOCHEN N, GUR Y, et al. Free water elimination and mapping from diffusion MRI[J]. Magn Reson Med, 2009, 62(3): 717-730. DOI: 10.1002/mrm.22055.
[4]
ANDICA C, KAMAGATA K, HATANO T, et al. MR biomarkers of degenerative brain disorders derived from diffusion imaging[J]. J Magn Reson Imaging, 2020, 52(6): 1620-1636. DOI: 10.1002/jmri.27019.
[5]
NAKAYA M, SATO N, MATSUDA H, et al. Free water derived by multi‐shell diffusion MRI reflects tau/neuroinflammatory pathology in Alzheimer's disease[J/OL]. Alzheimers Dement (N Y), 2022, 8(1): e12356 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/36304723/. DOI: 10.1002/trc2.12356.
[6]
FEBO M, PEREZ P D, CEBALLOS-DIAZ C, et al. Diffusion magnetic resonance imaging-derived free water detects neurodegenerative pattern induced by interferon-γ[J]. Brain Struct Funct, 2020, 225(1): 427-439. DOI: 10.1007/s00429-019-02017-1.
[7]
MAIER-HEIN K H, WESTIN C F, SHENTON M E, et al. Widespread white matter degeneration preceding the onset of dementia[J/OL]. Alzheimers Dement, 2015, 11(5): 485-493.e2 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/25035154/. DOI: 10.1016/j.jalz.2014.04.518.
[8]
SUN X R, WANG X C, ZHANG H, et al. Research progress of diffusion magnetic resonance imaging in mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2021, 12(1): 70-72, 84. DOI: 10.12015/issn.1674-8034.2021.01.015.
[9]
BERGER M, PIRPAMER L, HOFER E, et al. Free water diffusion MRI and executive function with a speed component in healthy aging[J/OL]. Neuroimage, 2022, 257: 119303 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/35568345/. DOI: 10.1016/j.neuroimage.2022.119303.
[10]
DESIMONE J C, WANG W E, LOEWENSTEIN D A, et al. Diffusion MRI relates to plasma Aβ42/40 in PET negative participants without dementia[J]. Alzheimers Dement, 2024, 20(4): 2830-2842. DOI: 10.1002/alz.13693.
[11]
GULLETT J M, O'SHEA A, LAMB D G, et al. The association of white matter free water with cognition in older adults[J/OL]. Neuroimage, 2020, 219: 117040 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/32534124/. DOI: 10.1016/j.neuroimage.2020.117040.
[12]
ARCHER D B, MOORE E E, SHASHIKUMAR N, et al. Free-water metrics in medial temporal lobe white matter tract projections relate to longitudinal cognitive decline[J]. Neurobiol Aging, 2020, 94: 15-23. DOI: 10.1016/j.neurobiolaging.2020.05.001.
[13]
BERGAMINO M, KEELING E, MCELVOGUE M, et al. White matter microstructure analysis in subjective memory complaints and cognitive impairment: Insights from diffusion kurtosis imaging and free-water DTI[J]. J Alzheimers Dis, 2024, 98(3): 863-884. DOI: 10.3233/JAD-230952.
[14]
SUN X, ZHAO C, CHEN S Y, et al. Free Water MR imaging of white matter microstructural changes is a sensitive marker of amyloid positivity in Alzheimer's disease[J]. J Magn Reson Imaging, 2024, 60(4): 1458-1469. DOI: 10.1002/jmri.29189.
[15]
AGGLETON J P, PRALUS A, NELSON A J, et al. Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit[J]. Brain, 2016, 139(Pt 7): 1877-1890. DOI: 10.1093/brain/aww083.
[16]
DUMONT M, ROY M, JODOIN P M, et al. Free water in white matter differentiates MCI and AD from control subjects[J/OL]. Front Aging Neurosci, 2019, 11: 270 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/31632265/. DOI: 10.3389/fnagi.2019.00270.
[17]
BERGAMINO M, WALSH R R, STOKES A M. Free-water diffusion tensor imaging improves the accuracy and sensitivity of white matter analysis in Alzheimer's disease[J/OL]. Sci Rep, 2021, 11(1): 6990 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/33772083/. DOI: 10.1038/s41598-021-86505-7.
[18]
ARCHER D B, COOMBES S A, MCFARLAND N R, et al. Development of a transcallosal tractography template and its application to dementia[J]. Neuroimage, 2019, 200: 302-312. DOI: 10.1016/j.neuroimage.2019.06.065.
[19]
YANG Y, SCHILLING K, SHASHIKUMAR N, et al. White matter microstructural metrics are sensitively associated with clinical staging in Alzheimer's disease[J/OL]. Alzheimers Dement (Amst), 2023, 15(2): e12425 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/37213219/. DOI: 10.1002/dad2.12425.
[20]
PICHET BINETTE A, THEAUD G, RHEAULT F, et al. Bundle-specific associations between white matter microstructure and Aβ and tau pathology in preclinical Alzheimer's disease[J/OL]. Elife, 2021, 10: e62929 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/33983116/. DOI: 10.7554/eLife.62929.
[21]
SCHUMACHER J, RAY N J, HAMILTON C A, et al. Free water imaging of the cholinergic system in dementia with Lewy bodies and Alzheimer's disease[J]. Alzheimers Dement, 2023, 19(10): 4549-4563. DOI: 10.1002/alz.13034.
[22]
SCHUMACHER J, RAY N J, HAMILTON C A, et al. Cholinergic white matter pathways in dementia with Lewy bodies and Alzheimer's disease[J]. Brain, 2022, 145(5): 1773-1784. DOI: 10.1093/brain/awab372.
[23]
QIU T, LIU Z Q, RHEAULT F, et al. Structural white matter properties and cognitive resilience to tau pathology[J]. Alzheimers Dement, 2024, 20(5): 3364-3377. DOI: 10.1002/alz.13776.
[24]
NAKAYA M, SATO N, MATSUDA H, et al. Assessment of gray matter microstructural alterations in Alzheimer's disease by free water imaging[J]. J Alzheimers Dis, 2024, 99(4): 1441-1453. DOI: 10.3233/JAD-231416.
[25]
OFORI E, DEKOSKY S T, FEBO M, et al. Free-water imaging of the hippocampus is a sensitive marker of Alzheimer's disease[J/OL]. Neuroimage Clin, 2019, 24: 101985 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/31470214/. DOI: 10.1016/j.nicl.2019.101985.
[26]
CHU W T, WANG W E, ZABORSZKY L, et al. Association of cognitive impairment with free water in the nucleus basalis of meynert and locus coeruleus to transentorhinal cortex tract[J/OL]. Neurology, 2022, 98(7): e700-e710 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/34906980/. DOI: 10.1212/WNL.0000000000013206.
[27]
WANG W E, CHEN R, MAYRAND R P, et al. Association of longitudinal cognitive decline with diffusion MRI in gray matter, amyloid, and tau deposition[J]. Neurobiol Aging, 2023, 121: 166-178. DOI: 10.1016/j.neurobiolaging.2022.10.013.
[28]
KUMARESAN M, KHAN S. Spectrum of non-motor symptoms in Parkinson's disease[J/OL]. Cureus, 2021, 13(2): e13275 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/33728210/. DOI: 10.7759/cureus.13275.
[29]
ZHOU G, REN J, RONG D, et al. Monitoring substantia nigra degeneration using free water imaging across prodromal and clinical Parkinson's disease[J]. Mov Disord, 2023, 38(5): 774-782. DOI: 10.1002/mds.29366.
[30]
ZHOU L, LI G, ZHANG Y, et al. Increased free water in the substantia nigra in idiopathic REM sleep behaviour disorder[J]. Brain, 2021, 144(5): 1488-1497. DOI: 10.1093/brain/awab039.
[31]
ZHANG D, ZHOU L, SHI Y, et al. Increased free water in the substantia nigra in asymptomatic LRRK2 G2019S mutation carriers[J]. Mov Disord, 2023, 38(1): 138-142. DOI: 10.1002/mds.29253.
[32]
BURCIU R G, OFORI E, ARCHER D B, et al. Progression marker of Parkinson's disease: a 4-year multi-site imaging study[J]. Brain, 2017, 140(8): 2183-2192. DOI: 10.1093/brain/awx146.
[33]
OFORI E, PASTERNAK O, PLANETTA P J, et al. Longitudinal changes in free-water within the substantia nigra of Parkinson's disease[J]. Brain, 2015, 138(Pt 8): 2322-2331. DOI: 10.1093/brain/awv136.
[34]
GUTTUSO T JR, BERGSLAND N, HAGEMEIER J, et al. Substantia nigra free water increases longitudinally in Parkinson disease[J]. AJNR Am J Neuroradiol, 2018, 39(3): 479-484. DOI: 10.3174/ajnr.A5545.
[35]
CHEN M, WANG Y, ZHANG C, et al. Free water and iron content in the substantia nigra at different stages of Parkinson's disease[J/OL]. Eur J Radiol, 2023, 167: 111030 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/37579561/. DOI: 10.1016/j.ejrad.2023.111030.
[36]
ANDICA C, KAMAGATA K, HATANO T, et al. Free-water imaging in white and gray matter in Parkinson's disease[J/OL]. Cells, 2019, 8(8): 839 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/31387313/. DOI: 10.3390/cells8080839.
[37]
MITCHELL T, LEHÉRICY S, CHIU S Y, et al. Emerging neuroimaging biomarkers across disease stage in Parkinson disease: A review[J]. JAMA Neurol, 2021, 78(10): 1262-1272. DOI: 10.1001/jamaneurol.2021.1312.
[38]
YANG J, ARCHER D B, BURCIU R G, et al. Multimodal dopaminergic and free-water imaging in Parkinson's disease[J]. Parkinsonism Relat Disord, 2019, 62: 10-15. DOI: 10.1016/j.parkreldis.2019.01.007.
[39]
GUTTUSO T JR, SIRICA D, TOSUN D, et al. Thalamic dorsomedial nucleus free water correlates with cognitive decline in Parkinson's disease[J]. Mov Disord, 2022, 37(3): 490-501. DOI: 10.1002/mds.28886.
[40]
CROWLEY S J, AMIN M, TANNER J J, et al. Free water fraction predicts cognitive decline for individuals with idiopathic Parkinson's disease[J]. Parkinsonism Relat Disord, 2022, 104: 72-77. DOI: 10.1016/j.parkreldis.2022.10.005.
[41]
BOHNEN N I, MÜLLER M L, KOTAGAL V, et al. Heterogeneity of cholinergic denervation in Parkinson's disease without dementia[J]. J Cereb Blood Flow Metab, 2012, 32(8): 1609-1617. DOI: 10.1038/jcbfm.2012.60.
[42]
RAY N J, LAWSON R A, MARTIN S L, et al. Free-water imaging of the cholinergic basal forebrain and pedunculopontine nucleus in Parkinson's disease[J]. Brain, 2023, 146(3): 1053-1064. DOI: 10.1093/brain/awac127.
[43]
CROWLEY S J, KANEL P, ROYTMAN S, et al. Basal forebrain integrity, cholinergic innervation and cognition in idiopathic Parkinson's disease[J]. Brain, 2024, 147(5): 1799-1808. DOI: 10.1093/brain/awad420.
[44]
BOWER A E, CRISOMIA S J, CHUNG J W, et al. Free water imaging unravels unique patterns of longitudinal structural brain changes in Parkinson's disease subtypes[J/OL]. Front Neurol, 2023, 14: 1278065 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/37965163/. DOI: 10.3389/fneur.2023.1278065.
[45]
PLANETTA P J, OFORI E, PASTERNAK O, et al. Free-water imaging in Parkinson's disease and atypical Parkinsonism[J]. Brain, 2016, 139(Pt 2): 495-508. DOI: 10.1093/brain/awv361.
[46]
SHAH A, PRASAD S, INDORIA A, et al. Free water imaging in Parkinson's disease and atypical Parkinsonian disorders[J]. J Neurol, 2024, 271(5): 2521-2528. DOI: 10.1007/s00415-024-12184-9.
[47]
MITCHELL T, ARCHER D B, CHU W T, et al. Neurite orientation dispersion and density imaging (NODDI) and free‐water imaging in Parkinsonism[J]. Hum Brain Mapp, 2019, 40(17): 5094-5107. DOI: 10.1002/hbm.24760.
[48]
CHIU S Y, CHEN R, WANG W E, et al. Longitudinal free‐water changes in dementia with Lewy bodies[J]. Mov Disord, 2024, 39(5): 836-846. DOI: 10.1002/mds.29763.
[49]
FERNANDEZ L, CORBEN L A, BILAL H, et al. Free-water imaging in friedreich ataxia using multi-compartment models[J]. Mov Disord, 2024, 39(2): 370-379. DOI: 10.1002/mds.29648.
[50]
SELVADURAI L P, CORBEN L A, DELATYCKI M B, et al. Multiple mechanisms underpin cerebral and cerebellar white matter deficits in Friedreich ataxia: The IMAGE‐FRDA study[J]. Hum Brain Mapp, 2020, 41(7): 1920-1933. DOI: 10.1002/hbm.24921.
[51]
BERGMANN Ø, HENRIQUES R, WESTIN C F, et al. Fast and accurate initialization of the free‐water imaging model parameters from multi‐shell diffusion MRI[J/OL]. NMR Biomed, 2020, 33(3): e4219 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/31856383/. DOI: 10.1002/nbm.4219.

PREV Research progress of magnetic resonance imaging in epileptic thalamus
NEXT Research progress on multimodal MRI of brain structural connectivity, functional connectivity, and brain network changes in cerebral palsy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn