Share:
Share this content in WeChat
X
Review
Research progress on multimodal MRI of brain structural connectivity, functional connectivity, and brain network changes in cerebral palsy
YU Haoyue  LIU Heng 

Cite this article as: YU H Y, LIU H. Research progress on multimodal MRI of brain structural connectivity, functional connectivity, and brain network changes in cerebral palsy[J]. Chin J Magn Reson Imaging, 2024, 15(12): 176-180, 186. DOI:10.12015/issn.1674-8034.2024.12.027.


[Abstract] Cerebral palsy is a leading cause of motor disabilities in children, severely affecting the daily lives of these children. It is frequently linked to brain damage, characterized by alterations in brain structural connections, functional connectivity, and brain networks, resulting in motor dysfunction and cognitive impairments. However, the underlying mechanisms of this brain damage are not yet fully understood. Magnetic resonance imaging provides a clear visualization of brain damage in children, aiding in the exploration of the mechanisms of brain injury in cerebral palsy and playing a crucial role in its diagnosis and evaluation. This review summarizes the current research on brain structural connectivity, functional connectivity, and brain networks in patients with cerebral palsy, aiming to deepen our understanding of the mechanisms of brain injury in cerebral palsy and to offer guidance for early clinical diagnosis, intervention, and future research.
[Keywords] cerebral palsy;magnetic resonance imaging;structural connectivity;functional connectivity;brain networks

YU Haoyue   LIU Heng*  

Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Zunyi563000, China

Corresponding author: LIU H, E-mail: zmcliuh@163.com

Conflicts of interest   None.

Received  2024-10-12
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.027
Cite this article as: YU H Y, LIU H. Research progress on multimodal MRI of brain structural connectivity, functional connectivity, and brain network changes in cerebral palsy[J]. Chin J Magn Reson Imaging, 2024, 15(12): 176-180, 186. DOI:10.12015/issn.1674-8034.2024.12.027.

[1]
DAN B. A new description of cerebral palsy: framing, wording, and perspective[J]. Dev Med Child Neurol, 2024, 66(7): 822-823. DOI: 10.1111/dmcn.15922.
[2]
Children's Rehabilitation Committee, Chinese Rehabilitation Medical Association, Rehabilitation Committee for Children with cerebral palsy, China Rehabilitation Association for Disabled Persons, Rehabilitation Physician Branch of Chinese Medical Doctor Association, et al. Chinese rehabilitation guidelines for cerebral palsy (2022) part 1: overview[J]. Chin J Appl Clin Pediatr, 2022, 37(12): 887-892. DOI: 10.3760/cma.j.cn101070-20220505-00500.
[3]
YANG S Y, XIA J Y, GAO J, et al. Increasing prevalence of cerebral palsy among children and adolescents in China 1988-2020: a systematic review and meta-analysis[J/OL]. J Rehabil Med, 2021, 53(5): jrm00195 [2024-10-11]. https://pubmed.ncbi.nlm.nih.gov/33961057/. DOI: 10.2340/16501977-2841.
[4]
PAUL S, NAHAR A, BHAGAWATI M, et al. A review on recent advances of cerebral palsy[J/OL]. Oxid Med Cell Longev, 2022, 2022: 2622310 [2024-10-11]. https://pubmed.ncbi.nlm.nih.gov/35941906/. DOI: 10.1155/2022/2622310.
[5]
LARSEN S M, TERJESEN T, JAHNSEN R B, et al. Health-related quality of life in adolescents with cerebral palsy; a cross-sectional and longitudinal population-based study[J]. Child Care Health Dev, 2023, 49(2): 373-381. DOI: 10.1111/cch.13055.
[6]
PANDA S, SINGH A, KATO H, et al. Cerebral palsy: a current perspective[J/OL]. Neoreviews, 2024, 25(6): e350-e360 [2024-10-11]. https://pubmed.ncbi.nlm.nih.gov/38821909/. DOI: 10.1542/neo.25-6-e350.
[7]
SILVA D C G DA, DE SÁ BARRETO DA CUNHA M, DE OLIVEIRA SANTANA A, et al. Malnutrition and nutritional deficiencies in children with cerebral palsy: a systematic review and meta-analysis[J/OL]. Public Health, 2022, 205: 192-201 [2024-10-11]. https://pubmed.ncbi.nlm.nih.gov/35339939/. DOI: 10.1016/j.puhe.2022.01.024.
[8]
O'SHEA T M. Mechanisms and timing of brain injury among persons with cerebral palsy[J]. Dev Med Child Neurol, 2024, 66(7): 829-830. DOI: 10.1111/dmcn.15849.
[9]
MOHANTY T, JOSEPH S D, GUNASEKARAN P K, et al. Predictors of risk for cerebral palsy: a review[J]. Pediatr Phys Ther, 2023, 35(3): 347-357. DOI: 10.1097/PEP.0000000000001020.
[10]
PÅHLMAN M, GILLBERG C, HIMMELMANN K. Neuroimaging findings in children with cerebral palsy with autism and/or attention-deficit/hyperactivity disorder: a population-based study[J]. Dev Med Child Neurol, 2022, 64(1): 63-69. DOI: 10.1111/dmcn.15011.
[11]
MARTINIE O, KARAN P, TRAVERSE E, et al. The challenge of diffusion magnetic resonance imaging in cerebral palsy: a proposed method to identify white matter pathways[J/OL]. Brain Sci, 2023, 13(10): 1386 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/37891755/. DOI: 10.3390/brainsci13101386.
[12]
JIANG H X, LIU H, HUANG T T, et al. Structural network performance for early diagnosis of spastic cerebral palsy in periventricular white matter injury[J]. Brain Imaging Behav, 2021, 15(2): 855-864. DOI: 10.1007/s11682-020-00295-6.
[13]
DOUCET G E, BAKER S, WILSON T W, et al. Weaker connectivity of the cortical networks is linked with the uncharacteristic gait in youth with cerebral palsy[J/OL]. Brain Sci, 2021, 11(8): 1065 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/34439684/. DOI: 10.3390/brainsci11081065.
[14]
AIJIEERGULI·MAIHESUMU, SONG J, XIE C, et al. Resting-state functional MRI to assess the brain function before and after the operation of children with cerebral palsy[J]. Chin J Magn Reson Imag, 2020, 11(4): 259-263. DOI: 10.12015/issn.1674-8034.2020.04.004.
[15]
MIN Z G, SHAN H R, XU L, et al. Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities[J/OL]. BMC Neurol, 2021, 21(1): 128 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/33740898/. DOI: 10.1186/s12883-021-02140-9.
[16]
RUIZ-RIZZO A L, FINKE K, ARCHILA-MELÉNDEZ M E. Diffusion tensor imaging in Alzheimer's studies[J/OL]. Methods Mol Biol, 2024, 2785: 105-113 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/38427191/. DOI: 10.1007/978-1-0716-3774-6_8.
[17]
AZIZI S, IRANI A, SHAHROKHI A, et al. Contribution of altered corticospinal microstructure to gait impairment in children with cerebral palsy[J]. Clin Neurophysiol, 2021, 132(9): 2211-2221. DOI: 10.1016/j.clinph.2021.06.016.
[18]
PAPADELIS C, KAYE H, SHORE B, et al. Maturation of corticospinal tracts in children with hemiplegic cerebral palsy assessed by diffusion tensor imaging and transcranial magnetic stimulation[J/OL]. Front Hum Neurosci, 2019, 13: 254 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/31396066/. DOI: 10.3389/fnhum.2019.00254.
[19]
KUCZYNSKI A M, DUKELOW S P, HODGE J A, et al. Corticospinal tract diffusion properties and robotic visually guided reaching in children with hemiparetic cerebral palsy[J]. Hum Brain Mapp, 2018, 39(3): 1130-1144. DOI: 10.1002/hbm.23904.
[20]
MAILLEUX L, SIMON-MARTINEZ C, RADWAN A, et al. White matter characteristics of motor, sensory and interhemispheric tracts underlying impaired upper limb function in children with unilateral cerebral palsy[J]. Brain Struct Funct, 2020, 225(5): 1495-1509. DOI: 10.1007/s00429-020-02070-1.
[21]
EYRE J A, SMITH M, DABYDEEN L, et al. Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?[J]. Ann Neurol, 2007, 62(5): 493-503. DOI: 10.1002/ana.21108.
[22]
JACOBS N P T, POUWELS P J W, VAN DER KROGT M M, et al. Brain structural and functional connectivity and network organization in cerebral palsy: a scoping review[J]. Dev Med Child Neurol, 2023, 65(9): 1157-1173. DOI: 10.1111/dmcn.15516.
[23]
MAHANNA A M, EL-TOUKHY N A E G, MOUSA A E, et al. Does motor deficit in children with cerebral palsy correlate with diffusion tensor metrics abnormalities in thalamocortical pathways?[J/OL]. Egypt J Radiol Nucl Med, 2021, 52(1): 82 [2024-08-06]. https://ejrnm.springeropen.com/articles/10.1186/s43055-021-00463-8. DOI: 10.1186/s43055-021-00463-8.
[24]
TRIVEDI R, AGARWAL S, SHAH V, et al. Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy[J]. Neuroradiology, 2010, 52(8): 759-765. DOI: 10.1007/s00234-010-0703-8.
[25]
YOSHIDA S, HAYAKAWA K, OISHI K, et al. Athetotic and spastic cerebral palsy: anatomic characterization based on diffusion-tensor imaging[J]. Radiology, 2011, 260(2): 511-520. DOI: 10.1148/radiol.11101783.
[26]
MAILLEUX L, FRANKI I, EMSELL L, et al. The relationship between neuroimaging and motor outcome in children with cerebral palsy: a systematic review-Part B diffusion imaging and tractography[J/OL]. Res Dev Disabil, 2020, 97: 103569 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/31901671/. DOI: 10.1016/j.ridd.2019.103569.
[27]
ARRIGONI F, PERUZZO D, GAGLIARDI C, et al. Whole-brain DTI assessment of white matter damage in children with bilateral cerebral palsy: evidence of involvement beyond the primary target of the anoxic insult[J]. AJNR Am J Neuroradiol, 2016, 37(7): 1347-1353. DOI: 10.3174/ajnr.A4717.
[28]
JIANG H X, LIU H, HE H R, et al. Specific white matter lesions related to motor dysfunction in spastic cerebral palsy: a meta-analysis of diffusion tensor imaging studies[J]. J Child Neurol, 2020, 35(2): 146-154. DOI: 10.1177/0883073819879844.
[29]
SCHECK S M, FRIPP J, REID L, et al. Extent of altered white matter in unilateral and bilateral periventricular white matter lesions in children with unilateral cerebral palsy[J/OL]. Res Dev Disabil, 2016, 55: 368-376 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/27280312/. DOI: 10.1016/j.ridd.2016.04.007.
[30]
WEINSTEIN M, GREEN D, GEVA R, et al. Interhemispheric and intrahemispheric connectivity and manual skills in children with unilateral cerebral palsy[J]. Brain Struct Funct, 2014, 219(3): 1025-1040. DOI: 10.1007/s00429-013-0551-5.
[31]
BAUER C M, PAPADELIS C. Alterations in the structural and functional connectivity of the visuomotor network of children with periventricular leukomalacia[J/OL]. Semin Pediatr Neurol, 2019, 31: 48-56 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/31548024/. DOI: 10.1016/j.spen.2019.05.009.
[32]
JIANG H X, XU D D, SONG J, et al. Research progress on multimodal MRI of sensorimotor network injury with spastic cerebral palsy[J]. Chin J Radiol, 2022, 56(7): 816-820. DOI: 10.3760/cma.j.cn112149-20210719-00685.
[33]
LAPORTA-HOYOS O, PANNEK K, BALLESTER-PLANÉ J, et al. White matter integrity in dyskinetic cerebral palsy: relationship with intelligence quotient and executive function[J/OL]. Neuroimage Clin, 2017, 15: 789-800 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/28702354/. DOI: 10.1016/j.nicl.2017.05.005.
[34]
HARLAAR L, POUWELS P J, GEYTENBEEK J, et al. Language comprehension in young people with severe cerebral palsy in relation to language tracts: a diffusion tensor imaging study[J]. Neuropediatrics, 2013, 44(5): 286-290. DOI: 10.1055/s-0033-1341600.
[35]
FALLAHI A, POOYAN M, LOTFI N, et al. Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach[J]. Neurol Sci, 2021, 42(6): 2379-2390. DOI: 10.1007/s10072-020-04759-x.
[36]
CHEN B S, LINKE A, OLSON L, et al. Resting state functional networks in 1-to-3-year-old typically developing children[J/OL]. Dev Cogn Neurosci, 2021, 51: 100991 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/34298412/. DOI: .
[37]
DU Y H, FANG S K, HE X Y, et al. A survey of brain functional network extraction methods using fMRI data[J]. Trends Neurosci, 2024, 47(8): 608-621. DOI: .
[38]
VALLINOJA J, NURMI T, JAATELA J, et al. Functional connectivity of sensorimotor network is enhanced in spastic diplegic cerebral palsy: a multimodal study using fMRI and MEG[J/OL]. Clin Neurophysiol, 2024, 157: 4-14 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/38006621/. DOI: 10.1016/j.clinph.2023.10.014.
[39]
WOODWARD K E, CARLSON H L, KUCZYNSKI A, et al. Sensory-motor network functional connectivity in children with unilateral cerebral palsy secondary to perinatal stroke[J/OL]. Neuroimage Clin, 2019, 21: 101670 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/30642756/. DOI: 10.1016/j.nicl.2019.101670.
[40]
SAUNDERS J, CARLSON H L, CORTESE F, et al. Imaging functional motor connectivity in hemiparetic children with perinatal stroke[J]. Hum Brain Mapp, 2019, 40(5): 1632-1642. DOI: 10.1002/hbm.24474.
[41]
TAJIK-PARVINCHI D, DAVIS A, ROTH S, et al. Functional connectivity and quality of life in young adults with cerebral palsy: a feasibility study[J/OL]. BMC Neurol, 2020, 20(1): 388 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/33096988/. DOI: 10.1186/s12883-020-01950-7.
[42]
ZHAO C F, LUO D, YU H Y, et al. An independent component analysis-based study of functional brain networks in children with spastic cerebral palsy complicated with periventricular white matter injury[J]. Chin Imag J Integr Tradit West Med, 2024, 22(2): 149-154. DOI: 10.3969/j.issn.1672-0512.2024.02.005.
[43]
QIN Y, LI Y N, SUN B, et al. Functional connectivity alterations in children with spastic and dyskinetic cerebral palsy[J/OL]. Neural Plast, 2018, 2018: 7058953 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/30186320/. DOI: 10.1155/2018/7058953.
[44]
MU X T, WANG Z Q, NIE B B, et al. Altered regional and circuit resting-state activity in patients with occult spastic diplegic cerebral palsy[J]. Pediatr Neonatol, 2018, 59(4): 345-351. DOI: 10.1016/j.pedneo.2017.10.003.
[45]
QIN Y, SUN B, ZHANG H L, et al. Aberrant interhemispheric functional organization in children with dyskinetic cerebral palsy[J/OL]. Biomed Res Int, 2019, 2019: 4362539 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/31011574/. DOI: 10.1155/2019/4362539.
[46]
JIANG Y W, MU Y, XU Z, et al. Identifying individual brain development using multimodality brain network[J/OL]. Commun Biol, 2024, 7(1): 1163 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/39289448/. DOI: 10.1038/s42003-024-06876-1.
[47]
YIN Y, QIU X F, NIE L S, et al. Individual-based morphological brain network changes in children with Rolandic epilepsy[J]. Clin Neurophysiol, 2024, 165: 90-96. DOI: 10.1016/j.clinph.2024.06.013.
[48]
YANG B N, XIN H T, WANG L, et al. Distinct brain network patterns in complete and incomplete spinal cord injury patients based on graph theory analysis[J/OL]. CNS Neurosci Ther, 2024, 30(8): e14910 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/39185854/. DOI: 10.1111/cns.14910.
[49]
PAPO D, BULDÚ J M. Does the brain behave like a (complex) network? I. Dynamics[J/OL]. Phys Life Rev, 2024, 48: 47-98 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/38145591/. DOI: 10.1016/j.plrev.2023.12.006.
[50]
TIAN Y, XU G Q, ZHANG J, et al. Nodal properties of the resting-state brain functional network in childhood and adolescence[J]. J Neuroimaging, 2023, 33(6): 1015-1023. DOI: 10.1111/jon.13155.
[51]
YANG Y L, HU J, ZHANG J J, et al. Study of cognitive functional changes in children with spastic cerebral palsy using diffusion tensor imaging based graph theory analysis[J]. Chin J Radiol, 2024, 58(3): 266-272. DOI: 10.3760/cma.j.cn112149-20231120-00408.
[52]
CRAIG B T, HILDERLEY A, KINNEY-LANG E, et al. Developmental neuroplasticity of the white matter connectome in children with perinatal stroke[J/OL]. Neurology, 2020, 95(18): e2476-e2486 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/32887781/. DOI: 10.1212/WNL.0000000000010669.
[53]
RADWAN A, DECRAENE L, DUPONT P, et al. Exploring structural connectomes in children with unilateral cerebral palsy using graph theory[J]. Hum Brain Mapp, 2023, 44(7): 2741-2753. DOI: 10.1002/hbm.26241.
[54]
LEE D H, PAE C, LEE J D, et al. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy[J]. Hum Brain Mapp, 2017, 38(10): 5292-5306. DOI: 10.1002/hbm.23738.
[55]
ZHANG W X, ZHANG S, ZHU M, et al. Changes of structural brain network following repetitive transcranial magnetic stimulation in children with bilateral spastic cerebral palsy: a diffusion tensor imaging study[J/OL]. Front Pediatr, 2020, 8: 617548 [2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/33520901/. DOI: 10.3389/fped.2020.617548.
[56]
BALLESTER-PLANÉ J, SCHMIDT R, LAPORTA-HOYOS O, et al. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function[J]. Hum Brain Mapp, 2017, 38(9): 4594-4612. DOI: 10.1002/hbm.23686.

PREV Research progress of free water diffusion tensor imaging in neurodegenerative diseases
NEXT Research progress of multimodal MRI in tremor-dominant Parkinson,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn