Share:
Share this content in WeChat
X
Review
Advantages and challenges of 7 T magnetic resonance imaging and typical clinical application for neurological disorders
YANG Xianfei  ZHEN Zhiming  CHEN Kang  WU Mei  OU Peiling  YU Hong  LIU Chen 

Cite this article as: YANG X F, ZHEN Z M, CHEN K, et al. Advantages and challenges of 7 T magnetic resonance imaging and typical clinical application for neurological disorders[J]. Chin J Magn Reson Imaging, 2024, 15(12): 187-193. DOI:10.12015/issn.1674-8034.2024.12.029.


[Abstract] Ultra-high-field magnetic resonance imaging (UHF-MRI), as a cutting-edge technology, has received widespread attention for its distinct advantages to both signal-to-noise ratio (SNR) and resolution. Recently, as the prototypical representative of UHF-MRI, 7 T magnetic resonance imaging (MRI) has begun to move from scientific research to clinical practice, and has made many changes in magnetic resonance techniques, including high-resolution structural imaging, susceptibility weighted imaging, X-nuclei MRI, magnetic resonance spectroscopy and blood oxygen level dependent magnetic resonance, which have greatly improved the diagnosis of neurological diseases. However, the increase in magnetic field strength also brings some challenges, such as enhanced radio frequency field inhomogeneity and specific absorption ratio limitation. These problems may exacerbate image artifacts, limit the utility of certain imaging sequences, and affect the promotion of UHF-MRI in clinical practice. Based on the experience of using 7 T MRI in the First Affiliated Hospital of the Army Medical University, this paper discusses the core advantages and main challenges of UHF-MRI, and briefly introduces its potentials in neurological system in the light of relevant literature, with the expectation of providing empirical insights for others to conduct 7 T MRI related research.
[Keywords] ultra-high-field;magnetic resonance imaging;neuroimaging;neurological disease;7 T magnetic resonance imaging

YANG Xianfei1, 2   ZHEN Zhiming1, 2   CHEN Kang1, 2   WU Mei1, 2   OU Peiling1, 2   YU Hong1, 2   LIU Chen1, 2*  

1 7 T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

2 Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

Corresponding author: LIU C, E-mail: liuchen@tmmu.edu.cn

Conflicts of interest   None.

Received  2024-10-06
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.029
Cite this article as: YANG X F, ZHEN Z M, CHEN K, et al. Advantages and challenges of 7 T magnetic resonance imaging and typical clinical application for neurological disorders[J]. Chin J Magn Reson Imaging, 2024, 15(12): 187-193. DOI:10.12015/issn.1674-8034.2024.12.029.

[1]
WENDEROTT K, KRUPS J, ZARUCHAS F, et al. Effects of artificial intelligence implementation on efficiency in medical imaging-a systematic literature review and meta-analysis[J/OL]. NPJ Digit Med, 2024, 7(1): 265 [2024-10-01]. https://pubmed.ncbi.nlm.nih.gov/39349815/. DOI: 10.1038/s41746-024-01248-9.
[2]
TRATTNIG S, SPRINGER E, BOGNER W, et al. Key clinical benefits of neuroimaging at 7T[J/OL]. NeuroImage, 2018, 168: 477-489 [2024-10-01]. https://pubmed.ncbi.nlm.nih.gov/27851995/. DOI: 10.1016/j.neuroimage.2016.11.031.
[3]
POHMANN R, SPECK O, SCHEFFLER K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays[J]. Magn Reson Med, 2016, 75(2): 801-809. DOI: 10.1002/mrm.25677.
[4]
KUMAR V J, SCHEFFLER K, HAGBERG G E, et al. Quantitative susceptibility mapping of the basal Ganglia and thalamus at 9.4 tesla[J/OL]. Front Neuroanat, 2021, 15: 725731 [2024-10-01]. https://pubmed.ncbi.nlm.nih.gov/34602986/. DOI: 10.3389/fnana.2021.725731.
[5]
RADOJEWSKI P, DOBROCKY T, BRANCA M, et al. Diagnosis of small unruptured intracranial aneurysms[J]. Clin Neuroradiol, 2024, 34(1): 45-49. DOI: 10.1007/s00062-023-01282-2.
[6]
SUI B B, SANNANANJA B, ZHU C C, et al. Report from the society of magnetic resonance angiography: clinical applications of 7T neurovascular MR in the assessment of intracranial vascular disease[J]. J Neurointerv Surg, 2024, 16(8): 846-851. DOI: 10.1136/jnis-2023-020668.
[7]
COSOTTINI M, CALZONI T, LAZZAROTTI G A, et al. Time-of-flight MRA of intracranial vessels at 7 T[J/OL]. Eur Radiol Exp, 2024, 8(1): 68 [2024-10-01]. https://pubmed.ncbi.nlm.nih.gov/38844683/. DOI: 10.1186/s41747-024-00463-z.
[8]
FENG J Q, LIU X K, ZHANG Z H, et al. Comparison of 7T and 3T vessel wall MRI for the evaluation of intracranial aneurysm wall[J]. Eur Radiol, 2022, 32(4): 2384-2392. DOI: 10.1007/s00330-021-08331-9.
[9]
KOUPPARIS A, VON ELLENRIEDER N, KHOO H M, et al. Association of EEG-fMRI responses and outcome after epilepsy surgery[J/OL]. Neurology, 2021, 97(15): e1523-e1536 [2024-10-01]. https://pubmed.ncbi.nlm.nih.gov/34400584/. DOI: 10.1212/WNL.0000000000012660.
[10]
CHO S, ROY A, LIU C J, et al. Cortical layer-specific differences in stimulus selectivity revealed with high-field fMRI and single-vessel resolution optical imaging of the primary visual cortex[J/OL]. Neuroimage, 2022, 251: 118978 [2024-10-01]. https://pubmed.ncbi.nlm.nih.gov/35143974/. DOI: 10.1016/j.neuroimage.2022.118978.
[11]
JIA K, GOEBEL R, KOURTZI Z. Ultra-high field imaging of human visual cognition[J/OL]. Annu. Rev. Vis. Sci., 2023, 9: 479-500 [2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/37137282/. DOI: 10.1146/annurev-vision-111022-123830.
[12]
POPLAWSKY A J, COVER C, REDDY S, et al. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb[J/OL]. Neuroimage, 2023, 274: 120121 [2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/37080347/. DOI: 10.1016/j.neuroimage.2023.120121.
[13]
MOEREL M, YACOUB E, GULBAN O F, et al. Using high spatial resolution fMRI to understand representation in the auditory network[J/OL]. Prog Neurobiol, 2021, 207: 101887 [2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/32745500/. DOI: 10.1016/j.pneurobio.2020.101887.
[14]
CHAN R W, CRON G O, ASAAD M, et al. Distinct local and brain-wide networks are activated by optogenetic stimulation of neurons specific to each layer of motor cortex[J/OL]. Neuroimage, 2022, 263: 119640 [2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/36176220/. DOI: 10.1016/j.neuroimage.2022.119640.
[15]
FINN E S, HUBER L, BANDETTINI P A. Higher and deeper: bringing layer fMRI to association cortex[J/OL]. Prog Neurobiol, 2021, 207: 101930 [2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/33091541/. DOI: 10.1016/j.pneurobio.2020.101930.
[16]
KOUSH Y, ROTHMAN D L, BEHAR K L, et al. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics[J]. J Cereb Blood Flow Metab, 2022, 42(6): 911-934. DOI: 10.1177/0271678x221076570.
[17]
SCHREINER S J, VAN BERGEN J M G, GIETL A F, et al. Gray matter gamma-hydroxy-butyric acid and glutamate reflect beta-amyloid burden at old age[J/OL]. Alzheimers Dement, 2024, 16(2): e12587 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/38690510/. DOI: 10.1002/dad2.12587.
[18]
MANCINI L, CASAGRANDA S, GAUTIER G, et al. CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing[J]. Eur J Nucl Med Mol Imaging, 2022, 49(7): 2377-2391. DOI: 10.1007/s00259-022-05676-1.
[19]
MEISSNER J E, KORZOWSKI A, REGNERY S, et al. Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T[J]. J Magn Reson Imaging, 2019, 50(4): 1268-1277. DOI: 10.1002/jmri.26702.
[20]
GRIMALDI S, MENDILI M M EL, ZAARAOUI W, et al. Increased sodium concentration in substantia nigra in early Parkinson's disease: a preliminary study with ultra-high field (7T) MRI[J/OL]. Front Neurol, 2021, 12: 715618 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/34566858/. DOI: 10.3389/fneur.2021.715618.
[21]
HAEGER A, BOTTLAENDER M, LAGARDE J, et al. What can 7T sodium MRI tell us about cellular energy depletion and neurotransmission in Alzheimer's disease?[J]. Alzheimers Dement, 2021, 17(11): 1843-1854. DOI: 10.1002/alz.12501.
[22]
MCCARTHY L, VERMA G, HANGEL G, et al. Application of 7T MRS to high-grade gliomas[J]. AJNR Am J Neuroradiol, 2022, 43(10): 1378-1395. DOI: 10.3174/ajnr.A7502.
[23]
REGNERY S, BEHL N G R, PLATT T, et al. Ultra-high-field sodium MRI as biomarker for tumor extent, grade and IDH mutation status in glioma patients[J/OL]. Neuroimage Clin, 2020, 28: 102427 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/33002860/. DOI: 10.1016/j.nicl.2020.102427.
[24]
PAECH D, NAGEL A M, SCHULTHEISS M N, et al. Quantitative dynamic oxygen 17 MRI at 7.0 T for the cerebral oxygen metabolism in glioma[J]. Radiology, 2020, 295(1): 181-189. DOI: 10.1148/radiol.2020191711.
[25]
PAECH D, WECKESSER N, FRANKE V L, et al. Whole-brain intracellular pH mapping of gliomas using high-resolution 31P MR spectroscopic imaging at 7.0 T[J/OL]. Radiol Imaging Cancer, 2024, 6(1): e220127 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/38133553/. DOI: 10.1148/rycan.220127.
[26]
PAYNE T, BURGESS T, BRADLEY S, et al. Multimodal assessment of mitochondrial function in Parkinson's disease[J]. Brain, 2024, 147(1): 267-280. DOI: 10.1093/brain/awad364.
[27]
KRAFF O, FISCHER A, NAGEL A M, et al. MRI at 7 Tesla and above: demonstrated and potential capabilities[J]. J Magn Reson Imaging, 2015, 41(1): 13-33. DOI: 10.1002/jmri.24573.
[28]
HANSSON B, MARKENROTH BLOCH K, OWMAN T, et al. Subjectively reported effects experienced in an actively shielded 7T MRI: a large-scale study[J]. J Magn Reson Imaging, 2020, 52(4): 1265-1276. DOI: 10.1002/jmri.27139.
[29]
MIAN O S, LI Y, ANTUNES A, et al. On the vertigo due to static magnetic fields[J/OL]. PLoS One, 2013, 8(10): e78748 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/24205304/. DOI: 10.1371/journal.pone.0078748.
[30]
COSOTTINI M, FROSINI D, BIAGI L, et al. Short-term side-effects of brain MR examination at 7 T: a single-centre experience[J]. Eur Radiol, 2014, 24(8): 1923-1928. DOI: 10.1007/s00330-014-3177-y.
[31]
WINTER L, SEIFERT F, ZILBERTI L, et al. MRI-related heating of implants and devices: a review[J]. J Magn Reson Imaging, 2021, 53(6): 1646-1665. DOI: 10.1002/jmri.27194.
[32]
VU A T, AUERBACH E, LENGLET C, et al. High resolution whole brain diffusion imaging at 7T for the Human Connectome Project[J/OL]. Neuroimage, 2015, 122: 318-331 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/26260428/. DOI: 10.1016/j.neuroimage.2015.08.004.
[33]
OLIVEIRA Í A F, ROOS T, DUMOULIN S O, et al. Can 7T MPRAGE match MP2RAGE for gray-white matter contrast?[J/OL]. Neuroimage, 2021, 240: 118384 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/34265419/. DOI: 10.1016/j.neuroimage.2021.118384.
[34]
JACOBS P S, BENYARD B, CAO Q, et al. B1+ inhomogeneity correction of volumetric brain NOEMTR via high permittivity dielectric padding at 7 T[J]. Magn Reson Med, 2023, 90(4): 1537-1546. DOI: 10.1002/mrm.29739.
[35]
YETISIR F, POSER B A, GRANT P E, et al. Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control[J/OL]. Magn Reson Imaging, 2022, 93: 87-96 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/35940379/. DOI: 10.1016/j.mri.2022.08.006.
[36]
SOLOMON O, PATRIAT R, BRAUN H, et al. Motion robust magnetic resonance imaging via efficient Fourier aggregation[J/OL]. Med Image Anal, 2023, 83: 102638 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/36257133/. DOI: 10.1016/j.media.2022.102638.
[37]
HEPHZIBAH R, ANANDHARAJ H C, KOWSALYA G, et al. Review on deep learning methodologies in medical image restoration and segmentation[J]. Curr Med Imaging, 2023, 19(8): 844-854. DOI: 10.2174/1573405618666220407112825.
[38]
KLINKMUELLER P, KRONENBUERGER M, MIAO X Y, et al. Impaired response of cerebral oxygen metabolism to visual stimulation in Huntington's disease[J]. J Cereb Blood Flow Metab, 2021, 41(5): 1119-1130. DOI: 10.1177/0271678X20949286.
[39]
MARXREITER F, LAMBRECHT V, MENNECKE A, et al. Parkinson's disease or multiple system atrophy: potential separation by quantitative susceptibility mapping[J/OL]. Ther Adv Neurol Disord, 2023, 16: 17562864221143834 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/36846471/. DOI: 10.1177/17562864221143834.
[40]
VAN EGROO M, RIPHAGEN J M, ASHTON N J, et al. Ultra-high field imaging, plasma markers and autopsy data uncover a specific rostral locus coeruleus vulnerability to hyperphosphorylated tau[J]. Mol Psychiatry, 2023, 28(6): 2412-2422. DOI: 10.1038/s41380-023-02041-y.
[41]
VAN DEN BRINK H, DOUBAL F N, DUERING M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke, 2023, 18(1): 28-35. DOI: 10.1177/17474930221091879.
[42]
HUANG J N, BIESSELS G J, DE LEEUW F E, et al. Cerebral microinfarcts revisited: detection, causes, and clinical relevance[J]. Int J Stroke, 2024, 19(1): 7-15. DOI: 10.1177/17474930231187979.
[43]
DUSEK P, HOFER T, ALEXANDER J, et al. Cerebral iron deposition in neurodegeneration[J/OL]. Biomolecules, 2022, 12(5): 714 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/35625641/. DOI: 10.3390/biom12050714.
[44]
PERERA MOLLIGODA ARACHCHIGE A S, GARNER A K. Seven Tesla MRI in Alzheimer's disease research: state of the art and future directions: a narrative review[J]. AIMS Neurosci, 2023, 10(4): 401-422. DOI: 10.3934/Neuroscience.2023030.
[45]
DAS N, REN J M, SPENCE J, et al. Phosphate brain energy metabolism and cognition in Alzheimer's disease: a spectroscopy study using whole-brain volume-coil 31Phosphorus magnetic resonance spectroscopy at 7Tesla[J/OL]. Front Neurosci, 2021, 15: 641739 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/33889067/. DOI: 10.3389/fnins.2021.641739.
[46]
BIONDETTI E, SANTIN M D, VALABRÈGUE R, et al. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease[J]. Brain, 2021, 144(10): 3114-3125. DOI: 10.1093/brain/awab191.
[47]
CHAU M T, TODD G, WILCOX R, et al. Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson's disease: a systematic review and meta-analysis[J/OL]. Parkinsonism Relat Disord, 2020, 78: 12-20 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/32668370/. DOI: 10.1016/j.parkreldis.2020.07.002.
[48]
BAE Y J, KIM J M, SOHN C H, et al. Imaging the substantia nigra in parkinson disease and other parkinsonian syndromes[J]. Radiology, 2021, 300(2): 260-278. DOI: 10.1148/radiol.2021203341.
[49]
LAKHANI D A, ZHOU X Z, TAO S Z, et al. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2024, 10(1): 13 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/38191546/. DOI: 10.1038/s41531-024-00631-3.
[50]
OKROMELIDZE L, PATEL V, SINGH R B, et al. Central vein sign in multiple sclerosis: a comparison study of the diagnostic performance of 3T versus 7T MRI[J]. AJNR Am J Neuroradiol, 2023, 45(1): 76-81. DOI: 10.3174/ajnr.A8083.
[51]
SATI P, OH J, CONSTABLE R T, et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative[J]. Nat Rev Neurol, 2016, 12(12): 714-722. DOI: 10.1038/nrneurol.2016.166.
[52]
CHAABAN L, SAFWAN N, MOUSSA H, et al. Central vein sign: a putative diagnostic marker for multiple sclerosis[J]. Acta Neurol Scand, 2022, 145(3): 279-287. DOI: 10.1111/ane.13553.
[53]
HARRISON D M, ROY S, OH J, et al. Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis[J]. JAMA Neurol, 2015, 72(9): 1004-1012. DOI: 10.1001/jamaneurol.2015.1241.
[54]
KILSDONK I D, JONKMAN L E, KLAVER R, et al. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study[J]. Brain, 2016, 139(Pt 5): 1472-1481. DOI: 10.1093/brain/aww037.
[55]
CAGOL A, CORTESE R, BARAKOVIC M, et al. Diagnostic performance of cortical lesions and the central vein sign in multiple sclerosis[J]. JAMA Neurol, 2024, 81(2): 143-153. DOI: 10.1001/jamaneurol.2023.4737.
[56]
PEROSA V, SCHERLEK A A, KOZBERG M G, et al. Deep learning assisted quantitative assessment of histopathological markers of Alzheimer's disease and cerebral amyloid angiopathy[J/OL]. Acta Neuropathol Commun, 2021, 9(1): 141 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/34419154/. DOI: 10.1186/s40478-021-01235-1.
[57]
NATSUMEDA M, MATSUZAWA H, WATANABE M, et al. SWI by 7T MR imaging for the microscopic imaging diagnosis of astrocytic and oligodendroglial tumors[J]. AJNR Am J Neuroradiol, 2022, 43(11): 1575-1581. DOI: 10.3174/ajnr.A7666.
[58]
CHENG K, DUAN Q, HU J X, et al. Evaluation of postcontrast images of intracranial tumors at 7T and 3T MRI: an intra-individual comparison study[J]. CNS Neurosci Ther, 2023, 29(2): 559-565. DOI: 10.1111/cns.14036.
[59]
REGNERY S, KNOWLES B R, PAECH D, et al. High-resolution FLAIR MRI at 7 Tesla for treatment planning in glioblastoma patients[J/OL]. Radiother Oncol, 2019, 130: 180-184 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/30177373/. DOI: 10.1016/j.radonc.2018.08.002.
[60]
EMIR U E, LARKIN S J, DE PENNINGTON N, et al. Noninvasive quantification of 2-hydroxyglutarate in human gliomas with IDH1 and IDH2 mutations[J]. Cancer Res, 2016, 76(1): 43-49. DOI: 10.1158/0008-5472.CAN-15-0934.
[61]
HAN X T, ZHOU H D, SUN W, et al. IDH1R132H mutation increases radiotherapy efficacy and a 4-gene radiotherapy-related signature of WHO grade 4 gliomas[J/OL]. Sci Rep, 2023, 13(1): 19659 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/37952042/. DOI: 10.1038/s41598-023-46335-1.
[62]
PARMIGIANI E, SCALERA M, MORI E, et al. Old stars and new players in the brain tumor microenvironment[J/OL]. Front Cell Neurosci, 2021, 15: 709917 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/34690699/. DOI: 10.3389/fncel.2021.709917.
[63]
GIRIDHARAN N, GLITZA OLIVA I C, O'BRIEN B J, et al. Targeting the tumor microenvironment in brain metastasis[J]. Neurosurg Clin N Am, 2020, 31(4): 641-649. DOI: 10.1016/j.nec.2020.06.011.
[64]
GLUNDE K, BHUJWALLA Z M, RONEN S M. Choline metabolism in malignant transformation[J]. Nat Rev Cancer, 2011, 11(12): 835-848. DOI: 10.1038/nrc3162.
[65]
VAN VELUW S J, SHIH A Y, SMITH E E, et al. Detection, risk factors, and functional consequences of cerebral microinfarcts[J]. Lancet Neurol, 2017, 16(9): 730-740. DOI: 10.1016/S1474-4422(17)30196-5.
[66]
VAN DEN BRINK H, DOUBAL F N, DUERING M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke, 2023, 18(1): 28-35. DOI: 10.1177/17474930221091879.
[67]
DE COCKER L J, LINDENHOLZ A, ZWANENBURG J J, et al. Clinical vascular imaging in the brain at 7T[J]. NeuroImage, 2018, 168: 452-458. DOI: 10.1016/j.neuroimage.2016.11.044.
[68]
BAI X Y, FAN P P, LI Z Y, et al. Evaluating middle cerebral artery plaque characteristics and lenticulostriate artery morphology associated with subcortical infarctions at 7T MRI[J]. J Magn Reson Imaging, 2024, 59(3): 1045-1055. DOI: 10.1002/jmri.28839.
[69]
VAN HESPEN K M, ZWANENBURG J J M, HENDRIKSE J, et al. Subvoxel vessel wall thickness measurements of the intracranial arteries using a convolutional neural network[J/OL]. Med Image Anal, 2021, 67: 101818 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/33049576/. DOI: 10.1016/j.media.2020.101818.
[70]
WU F, YU H, YANG Q. Imaging of intracranial atherosclerotic plaques using 3.0 T and 7.0 T magnetic resonance imaging-current trends and future perspectives[J]. Cardiovasc Diagn Ther, 2020, 10(4): 994-1004. DOI: 10.21037/cdt.2020.02.03.
[71]
FAKIH R, ROA J A, BATHLA G, et al. Detection and quantification of symptomatic atherosclerotic plaques with high-resolution imaging in cryptogenic stroke[J]. Stroke, 2020, 51(12): 3623-3631. DOI: 10.1161/STROKEAHA.120.031167.
[72]
ONDER O, YARASIR Y, AZIZOVA A, et al. Errors, discrepancies and underlying bias in radiology with case examples: a pictorial review[J/OL]. Insights Imaging, 2021, 12(1): 51 [2024-09-14]. https://pubmed.ncbi.nlm.nih.gov/33877458/. DOI: 10.1186/s13244-021-00986-8.

PREV Research progress of multimodal MRI in tremor-dominant Parkinson,s disease
NEXT Progress in cerebellar high-field and ultra-high-field magnetic resonance imaging and their applications in neurodegenerative diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn