Share:
Share this content in WeChat
X
Review
Progress in cerebellar high-field and ultra-high-field magnetic resonance imaging and their applications in neurodegenerative diseases
HU Yuwei  YANG Xianfei  LI Congwei  OU Peiling  SHI Linfeng  LIU Chen 

Cite this article as: HU Y W, YANG X F, LI C W, et al. Progress in cerebellar high-field and ultra-high-field magnetic resonance imaging and their applications in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2024, 15(12): 194-199, 211. DOI:10.12015/issn.1674-8034.2024.12.030.


[Abstract] Although the cerebellum of humans is quite small in volume, it plays a crucial role in motor control, balance maintenance, and cognitive functions. A variety of diseases, especially neurodegenerative diseases, involve the cerebellum during their progression, severely affecting the daily lives of patients. Therefore, studying the cerebellum in patients with neurodegenerative diseases (NDs) helps us understand their pathological mechanisms. Currently, the application of cerebellar high field magnetic resonance imaging (HF-MRI) in NDs has provided a wealth of imaging evidence for changes in cerebellar structure and function. Advanced ultra-high field magnetic resonance imaging (UHF-MRI) of the cerebellum allows us to further investigate the subtle structures and functional characteristics of the cerebellum, which holds broad prospects, but has not yet been widely applied in the study of NDs. This paper reviews the research progress of cerebellar HF-MRI and UHF-MRI, as well as their applications in NDs, and analyzes the advantages and challenges of cerebellar UHF-MRI. In the future, with the empowerment of cerebellar UHF-MRI, there is hope to identify neuroimaging biomarkers for the early and precise diagnosis of NDs from the cerebellar perspective.
[Keywords] cerebellum;neuroimaging;magnetic resonance imaging;ultra-high-field;brain structure;brain function;neurodegenerative diseases

HU Yuwei1, 2   YANG Xianfei1, 2   LI Congwei1, 2   OU Peiling1, 2   SHI Linfeng1, 2   LIU Chen1, 2*  

1 7 T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

2 Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

Corresponding author: LIU C, E-mail: liuchen@tmmu.edc.cn

Conflicts of interest   None.

Received  2024-11-11
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.030
Cite this article as: HU Y W, YANG X F, LI C W, et al. Progress in cerebellar high-field and ultra-high-field magnetic resonance imaging and their applications in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2024, 15(12): 194-199, 211. DOI:10.12015/issn.1674-8034.2024.12.030.

[1]
SERENO M I, DIEDRICHSEN J, TACHROUNT M, et al. The human cerebellum has almost 80% of the surface area of the neocortex[J]. Proc Natl Acad Sci U S A, 2020, 117(32): 19538-19543. DOI: 10.1073/pnas.2002896117.
[2]
BEURIAT P A, CRISTOFORI I, GORDON B, et al. The shifting role of the cerebellum in executive, emotional and social processing across the lifespan[J/OL]. Behav Brain Funct, 2022, 18(1): 6 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/35484543/. DOI: 10.1186/s12993-022-00193-5.
[3]
RUDOLPH S, BADURA A, LUTZU S, et al. Cognitive-affective functions of the cerebellum[J]. J Neurosci, 2023, 43(45): 7554-7564. DOI: 10.1523/JNEUROSCI.1451-23.2023.
[4]
CAREY M R. The cerebellum[J/OL]. Curr Biol, 2024, 34(1): R7-R11 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/38194930/. DOI: 10.1016/j.cub.2023.11.048.
[5]
FENG S X, HUANG Y Y, LI H H, et al. Dynamic effective connectivity in the cerebellar dorsal dentate nucleus and the cerebrum, cognitive impairment, and clinical correlates in patients with schizophrenia[J/OL]. Schizophr Res, 2024, 271: 394-401 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/38729789/. DOI: 10.1016/j.schres.2024.05.003.
[6]
CAJIGAS I, MORRISON M A, LUCIANO M S, et al. Cerebellar deep brain stimulation for the treatment of movement disorders in cerebral palsy[J]. J Neurosurg, 2023, 139(3): 605-614. DOI: 10.3171/2023.1.JNS222289.
[7]
NIE L L, JIANG Y C, LV Z X, et al. Deep cerebellar nuclei functional connectivity with cerebral cortex in temporal lobe epilepsy with and without focal to bilateral tonic-clonic seizures: a resting-state fMRI study[J]. Cerebellum, 2022, 21(2): 253-263. DOI: 10.1007/s12311-021-01266-3.
[8]
YANG Y P, LI J L, LI T, et al. Cerebellar connectome alterations and associated genetic signatures in multiple sclerosis and neuromyelitis optica spectrum disorder[J/OL]. J Transl Med, 2023, 21(1): 352 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/37245044/. DOI: 10.1186/s12967-023-04164-w.
[9]
KLAUS J, STOODLEY C J, SCHUTTER D J L G. Neurodevelopmental trajectories of cerebellar grey matter associated with verbal abilities in males with autism spectrum disorder[J/OL]. Dev Cogn Neurosci, 2024, 67: 101379 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/38615557/. DOI: 10.1016/j.dcn.2024.101379.
[10]
MITIAGIN Y, BARZILAI A. Ataxia-telangiectasia mutated plays an important role in cerebellar integrity and functionality[J]. Neural Regen Res, 2023, 18(3): 497-502. DOI: 10.4103/1673-5374.350194.
[11]
LIU G, YANG C, WANG X, et al. Cerebellum in neurodegenerative diseases: advances, challenges, and prospects[J/OL]. iScience, 2024, 27(11): 111194 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/39555407/. DOI: 10.1016/j.isci.2024.111194.
[12]
CHEN Y, SPINA S, CALLAHAN P, et al. Pathology-specific patterns of cerebellar atrophy in neurodegenerative disorders[J]. Alzheimers Dement, 2024, 20(3): 1771-1783. DOI: 10.1002/alz.13551.
[13]
LI T B, LE W D, JANKOVIC J. Linking the cerebellum to Parkinson disease: an update[J]. Nat Rev Neurol, 2023, 19(11): 645-654. DOI: 10.1038/s41582-023-00874-3.
[14]
MORMINA E, PETRACCA M, BOMMARITO G, et al. Cerebellum and neurodegenerative diseases: beyond conventional magnetic resonance imaging[J]. World J Radiol, 2017, 9(10): 371-388. DOI: 10.4329/wjr.v9.i10.371.
[15]
LONG J Y, QIN K, WU Y, et al. Gray matter abnormalities and associated familial risk endophenotype in individuals with first-episode bipolar disorder: evidence from whole-brain voxel-wise meta-analysis[J/OL]. Asian J Psychiatr, 2022, 74: 103179 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/35691059/. DOI: 10.1016/j.ajp.2022.103179.
[16]
BEDE P, CHIPIKA R H, CHRISTIDI F, et al. Genotype-associated cerebellar profiles in ALS: focal cerebellar pathology and cerebro-cerebellar connectivity alterations[J]. J Neurol Neurosurg Psychiatry, 2021, 92(11): 1197-1205. DOI: 10.1136/jnnp-2021-326854.
[17]
SI S Q, BI A, YU Z Y, et al. Mapping gray and white matter volume abnormalities in early-onset psychosis: an ENIGMA multicenter voxel-based morphometry study[J]. Mol Psychiatry, 2024, 29(2): 496-504. DOI: 10.1038/s41380-023-02343-1.
[18]
DIEDRICHSEN J. A spatially unbiased atlas template of the human cerebellum[J]. Neuroimage, 2006, 33(1): 127-138. DOI: 10.1016/j.neuroimage.2006.05.056.
[19]
ROMERO J E, COUPÉ P, GIRAUD R, et al. CERES: a new cerebellum lobule segmentation method[J/OL]. Neuroimage, 2017, 147: 916-924 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/27833012/. DOI: 10.1016/j.neuroimage.2016.11.003.
[20]
FISCH L, WINTER N R, GOLTERMANN J, et al. Deepmriprep: voxel-based morphometry (VBM) preprocessing via deep neural networks[EB/OL]. 2024: arXiv: 2408.10656. http://arxiv.org/abs/2408.10656.
[21]
FABER J, KÜGLER D, BAHRAMI E, et al. CerebNet: a fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation[J/OL]. Neuroimage, 2022, 264: 119703 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/36349595/. DOI: 10.1016/j.neuroimage.2022.119703.
[22]
BURKETT B J, FAGAN A J, FELMLEE J P, et al. Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges[J]. Neuroradiology, 2021, 63(2): 167-177. DOI: 10.1007/s00234-020-02629-z.
[23]
TOURNIER J D. Diffusion MRI in the brain - Theory and concepts[J/OL]. Prog Nucl Magn Reson Spectrosc, 2019, 112/113: 1-16 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/31481155/. DOI: 10.1016/j.pnmrs.2019.03.001.
[24]
MACHADO-RIVAS F, AFACAN O, KHAN S, et al. Tractography of the cerebellar peduncles in second- and third-trimester fetuses[J]. AJNR Am J Neuroradiol, 2021, 42(1): 194-200. DOI: 10.3174/ajnr.A6869.
[25]
AL-ARAB N, HANNOUN S. White matter integrity assessment in spinocerebellar ataxia type 2 (SCA2) patients[J]. Clin Radiol, 2024, 79(1): 67-72. DOI: 10.1016/j.crad.2023.10.020.
[26]
WIEGELL M R, LARSSON H B, WEDEEN V J. Fiber crossing in human brain depicted with diffusion tensor MR imaging[J]. Radiology, 2000, 217(3): 897-903. DOI: 10.1148/radiology.217.3.r00nv43897.
[27]
SEYEDMIRZAEI H, NABIZADEH F, AARABI M H, et al. Neurite orientation dispersion and density imaging in multiple sclerosis: a systematic review[J]. J Magn Reson Imaging, 2023, 58(4): 1011-1029. DOI: 10.1002/jmri.28727.
[28]
PINI L, JACQUEMOT C, CAGNIN A, et al. Aberrant brain network connectivity in presymptomatic and manifest Huntington's disease: a systematic review[J]. Hum Brain Mapp, 2020, 41(1): 256-269. DOI: 10.1002/hbm.24790.
[29]
BATSIKADZE G, DIEKMANN N, ERNST T M, et al. The cerebellum contributes to context-effects during fear extinction learning: a 7T fMRI study[J]. Neuroimage, 2022, 253: 119080. DOI: 10.1016/j.neuroimage.2022.119080.
[30]
THÜRLING M, HAUTZEL H, KÜPER M, et al. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7 T fMRI study[J]. Neuroimage, 2012, 62(3): 1537-1550. DOI: 10.1016/j.neuroimage.2012.05.037.
[31]
JUNG W B, IM G H, JIANG H Y, et al. Early fMRI responses to somatosensory and optogenetic stimulation reflect neural information flow[J/OL]. Proc Natl Acad Sci U S A, 2021, 118(11): e2023265118 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/33836602/. DOI: 10.1073/pnas.2023265118.
[32]
CABALLERO-GAUDES C, REYNOLDS R C. Methods for cleaning the BOLD fMRI signal[J/OL]. NeuroImage, 2017, 154: 128-149 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/27956209/. DOI: 10.1016/j.neuroimage.2016.12.018.
[33]
D'ESPOSITO M, DEOUELL L Y, GAZZALEY A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging[J]. Nat Rev Neurosci, 2003, 4(11): 863-872. DOI: 10.1038/nrn1246.
[34]
JING J L, KLUGAH-BROWN B, XIA S Y, et al. Comparative analysis of group information-guided independent component analysis and independent vector analysis for assessing brain functional network characteristics in autism spectrum disorder[J/OL]. Front Neurosci, 2023, 17: 1252732 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/37928736/. DOI: 10.3389/fnins.2023.1252732.
[35]
FEINBERG D A, BECKETT A J S, VU A T, et al. Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla[J]. Nat Methods, 2023, 20(12): 2048-2057. DOI: 10.1038/s41592-023-02068-7.
[36]
MARQUES J P, VAN DER ZWAAG W, GRANZIERA C, et al. Cerebellar cortical layers: in vivo visualization with structural high-field-strength MR imaging[J]. Radiology, 2010, 254(3): 942-948. DOI: 10.1148/radiol.09091136.
[37]
VACHHA B, HUANG S Y. MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond[J/OL]. Eur Radiol Exp, 2021, 5(1): 35 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/34435246/. DOI: 10.1186/s41747-021-00216-2.
[38]
AGOSTINELLI L J, SEAMAN S C, SAPER C B, et al. Human brainstem and cerebellum atlas: chemoarchitecture and cytoarchitecture paired to MRI[J]. J Neurosci, 2023, 43(2): 221-239. DOI: 10.1523/JNEUROSCI.0587-22.2022.
[39]
LOUAPRE C, TREABA C A, BARLETTA V, et al. Ultra-high field 7 T imaging in multiple sclerosis[J]. Curr Opin Neurol, 2020, 33(4): 422-429. DOI: 10.1097/WCO.0000000000000839.
[40]
FARTARIA M J, OʼBRIEN K, ŞOREGA A, et al. An ultra-high field study of cerebellar pathology in early relapsing-remitting multiple sclerosis using MP2RAGE[J]. Invest Radiol, 2017, 52(5): 265-273. DOI: 10.1097/RLI.0000000000000338.
[41]
PRIOVOULOS N, ANDERSEN M, DUMOULIN S O, et al. High-resolution motion-corrected 7.0-T MRI to derive morphologic measures from the human cerebellum in vivo[J/OL]. Radiology, 2023, 307(2): e220989 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/36648348/. DOI: 10.1148/radiol.220989.
[42]
BAE Y J, KIM J M, SOHN C H, et al. Imaging the substantia nigra in parkinson disease and other parkinsonian syndromes[J]. Radiology, 2021, 300(2): 260-278. DOI: 10.1148/radiol.2021203341.
[43]
BOILLAT Y, BAZIN P L, VAN DER ZWAAG W. Whole-body somatotopic maps in the cerebellum revealed with 7T fMRI[J/OL]. Neuroimage, 2020, 211: 116624 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/32058002/. DOI: 10.1016/j.neuroimage.2020.116624.
[44]
SCHICK F. Whole-body MRI at high field: technical limits and clinical potential[J]. Eur Radiol, 2005, 15(5): 946-959. DOI: 10.1007/s00330-005-2678-0.
[45]
PRIOVOULOS N, ROOS T, IPEK Ö, et al. A local multi-transmit coil combined with a high-density receive array for cerebellar fMRI at 7 T[J/OL]. NMR Biomed, 2021, 34(11): e4586 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/34231292/. DOI: 10.1002/nbm.4586.
[46]
WINTER L, SEIFERT F, ZILBERTI L, et al. MRI-related heating of implants and devices: a review[J]. J Magn Reson Imaging, 2021, 53(6): 1646-1665. DOI: 10.1002/jmri.27194.
[47]
PLATT T, LADD M E, PAECH D. 7 tesla and beyond: advanced methods and clinical applications in magnetic resonance imaging[J]. Invest Radiol, 2021, 56(11): 705-725. DOI: 10.1097/RLI.0000000000000820.
[48]
VAIDYA M V, LAZAR M, DENIZ C M, et al. Improved detection of fMRI activation in the cerebellum at 7T with dielectric pads extending the imaging region of a commercial head coil[J]. J Magn Reson Imaging, 2018, 48(2): 431-440. DOI: 10.1002/jmri.25936.
[49]
YANG C, LIU G D, CHEN X, et al. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier[J/OL]. MedComm, 2024, 5(7): e638 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/39006764/. DOI: 10.1002/mco2.638.
[50]
CHEN Y N, QI Y W, HU Y Y, et al. Integrated cerebellar radiomic-network model for predicting mild cognitive impairment in Alzheimer's disease[J/OL]. Alzheimers Dement, 2024 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/39535490/. DOI: 10.1002/alz.14361.
[51]
JANKOVIC J, TAN E K. Parkinson's disease: etiopathogenesis and treatment[J]. J Neurol Neurosurg Psychiatry, 2020, 91(8): 795-808. DOI: 10.1136/jnnp-2019-322338.
[52]
O'CALLAGHAN C, HORNBERGER M, BALSTERS J H, et al. Cerebellar atrophy in Parkinson's disease and its implication for network connectivity[J]. Brain, 2016, 139(Pt 3): 845-855. DOI: 10.1093/brain/awv399.
[53]
KERESTES R, LAANSMA M A, OWENS-WALTON C, et al. Cerebellar volume and disease staging in Parkinson's disease: an ENIGMA-PD study[J]. Mov Disord, 2023, 38(12): 2269-2281. DOI: 10.1002/mds.29611.
[54]
LIU Y J, YUAN J Y, TAN C L, et al. Exploring brain asymmetry in early-stage Parkinson's disease through functional and structural MRI[J/OL]. CNS Neurosci Ther, 2024, 30(7): e14874 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/39056398/. DOI: 10.1111/cns.14874.
[55]
SHEN B, YAO Q, LI W, et al. Dynamic cerebellar and sensorimotor network compensation in tremor-dominated Parkinson's disease[J/OL]. Neurobiol Dis, 2024, 201: 106659 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/39243826/. DOI: 10.1016/j.nbd.2024.106659.
[56]
CHIPIKA R H, MULKERRIN G, PRADAT P F, et al. Cerebellar pathology in motor neuron disease: neuroplasticity and neurodegeneration[J]. Neural Regen Res, 2022, 17(11): 2335-2341. DOI: 10.4103/1673-5374.336139.
[57]
RENTON A E, CHIÒ A, TRAYNOR B J. State of play in amyotrophic lateral sclerosis genetics[J]. Nat Neurosci, 2014, 17(1): 17-23. DOI: 10.1038/nn.3584.
[58]
BARRY R L, BABU, ANTERAPER S A, et al. Ultra-high field (7T) functional magnetic resonance imaging in amyotrophic lateral sclerosis: a pilot study[J/OL]. Neuroimage Clin, 2021, 30: 102648 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/33872993/. DOI: 10.1016/j.nicl.2021.102648.
[59]
ABIDI M, MARCO G D, GRAMI F, et al. Neural correlates of motor imagery of gait in amyotrophic lateral sclerosis[J]. J Magn Reson Imaging, 2021, 53(1): 223-233. DOI: 10.1002/jmri.27335.
[60]
CHATAWAY J, WILLIAMS T, LI V, et al. Clinical trials for progressive multiple sclerosis: progress, new lessons learned, and remaining challenges[J]. Lancet Neurol, 2024, 23(3): 277-301. DOI: 10.1016/S1474-4422(24)00027-9.
[61]
MAXWELL D L, ORIAN J M. Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions[J/OL]. J Cent Nerv Syst Dis, 2023, 15: 11795735231211508 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/37942276/. DOI: .
[62]
GALBUSERA R, PARMAR K, BOILLAT Y, et al. Laminar analysis of the cerebellar cortex shows widespread damage in early MS patients: a pilot study at 7T MRI[J/OL]. Mult Scler J Exp Transl Clin, 2020, 6(4): 2055217320961409 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/33149930/. DOI: .
[63]
MEIJBOOM R, YORK E N, KAMPAITE A, et al. Patterns of brain atrophy in recently-diagnosed relapsing-remitting multiple sclerosis[J/OL]. PLoS One, 2023, 18(7): e0288967 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/37506096/. DOI: 10.1371/journal.pone.0288967.
[64]
BONACCHI R, MEANI A, PAGANI E, et al. The role of cerebellar damage in explaining disability and cognition in multiple sclerosis phenotypes: a multiparametric MRI study[J]. J Neurol, 2022, 269(7): 3841-3857. DOI: 10.1007/s00415-022-11021-1.
[65]
RUGGIERI S, BHARTI K, PROSPERINI L, et al. A comprehensive approach to disentangle the effect of cerebellar damage on physical disability in multiple sclerosis[J/OL]. Front Neurol, 2020, 11: 529 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/32695059/. DOI: 10.3389/fneur.2020.00529.
[66]
SCHOONHEIM M M, DOUW L, BROEDERS T A, et al. The cerebellum and its network: disrupted static and dynamic functional connectivity patterns and cognitive impairment in multiple sclerosis[J]. Mult Scler, 2021, 27(13): 2031-2039. DOI: 10.1177/1352458521999274.
[67]
TOMMASIN S, IAKOVLEVA V, ROCCA M A, et al. Relation of sensorimotor and cognitive cerebellum functional connectivity with brain structural damage in patients with multiple sclerosis and no disability[J]. Eur J Neurol, 2022, 29(7): 2036-2046. DOI: 10.1111/ene.15329.
[68]
WALKER F. Huntington's disease[J/OL]. Lancet, 2007, 369: 218-228 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/17240289/. DOI: 10.1016/S0140-6736(07)60111-1.
[69]
MEDINA A, MAHJOUB Y, SHAVER L, et al. Prevalence and incidence of Huntington's disease: an updated systematic review and meta-analysis[J]. Mov Disord, 2022, 37(12): 2327-2335. DOI: 10.1002/mds.29228.
[70]
GALVEZ V, RAMÍREZ-GARCÍA G, HERNANDEZ-CASTILLO C R, et al. Extrastriatal degeneration correlates with deficits in the motor domain subscales of the UHDRS[J/OL]. J Neurol Sci, 2018, 385: 22-29 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/29406908/. DOI: 10.1016/j.jns.2017.11.040.
[71]
JUNCA E, PINO M, SANTAMARÍA-GARCÍA H, et al. Brain, cognitive, and physical disability correlates of decreased quality of life in patients with Huntington's disease[J]. Qual Life Res, 2023, 32(1): 171-182. DOI: 10.1007/s11136-022-03220-0.
[72]
PADRON-RIVERA G, DIAZ R, VACA-PALOMARES I, et al. Cerebellar degeneration signature in Huntington's disease[J]. Cerebellum, 2021, 20(6): 942-945. DOI: 10.1007/s12311-021-01256-5.
[73]
TERESHCHENKO A, MAGNOTTA V, EPPING E, et al. Brain structure in juvenile-onset Huntington disease[J/OL]. Neurology, 2019, 92(17): e1939-e1947 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/30971481/. DOI: 10.1212/WNL.0000000000007355.
[74]
SANTOS-LOBATO B L, ROCHA J S S, ROCHA L C. Case report: Cerebellar sparing in juvenile Huntington's disease[J/OL]. Front Neurol, 2023, 13: 1089193 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/36712421/. DOI: 10.3389/fneur.2022.1089193.
[75]
ZHANG S R, LIN J Y, CHENG Y F, et al. Aberrant resting-state brain activity in Huntington's disease: a voxel-based meta-analysis[J/OL]. Front Neurol, 2023, 14: 1124158 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/37064205/. DOI: 10.3389/fneur.2023.1124158.

PREV Advantages and challenges of 7 T magnetic resonance imaging and typical clinical application for neurological disorders
NEXT Advances in the application of 7 T magnetic resonance imaging in brain tumor diagnosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn