Share:
Share this content in WeChat
X
Review
Advances in the application of 7 T magnetic resonance imaging in brain tumor diagnosis
YU Fengwei  LI Zilong  CHEN Pinzhen  CHEN Wei 

Cite this article as: YU F W, LI Z L, CHEN P Z, et al. Advances in the application of 7 T magnetic resonance imaging in brain tumor diagnosis[J]. Chin J Magn Reson Imaging, 2024, 15(12): 200-205. DOI:10.12015/issn.1674-8034.2024.12.031.


[Abstract] Brain tumors, as prevalent central nervous system malignancies, require early and accurate diagnosis for improving patient survival rates and quality of life. However, traditional MRI techniques face limitations in resolution and contrast, posing challenges in the identification and delineation of brain tumors. 7 T MRI technology offers superior visualization of the tumor's microstructure, enabling more precise tumor typing and grading. Moreover, 7 T MRI demonstrates significant potential in dynamically monitoring tumor growth, assessing the tumor microenvironment, and guiding surgical resection. This review summarizes the advancements in the application of 7 T magnetic resonance imaging in brain tumor research and discusses the challenges and future directions of 7 T MRI technology in brain tumor studies, aiming to provide insights and guidance for clinicians and researchers.
[Keywords] brain tumors;7 T magnetic resonance imaging;ultra-high field strength;multimodal imaging;amide proton transfer weighted;diffusion weighted imaging

YU Fengwei1, 2   LI Zilong1, 2   CHEN Pinzhen1, 2   CHEN Wei1, 2*  

1 7 T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

2 Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China

Corresponding author: CHEN W, E-mail: landcw@tmmu.edu.cn

Conflicts of interest   None.

Received  2024-09-28
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.031
Cite this article as: YU F W, LI Z L, CHEN P Z, et al. Advances in the application of 7 T magnetic resonance imaging in brain tumor diagnosis[J]. Chin J Magn Reson Imaging, 2024, 15(12): 200-205. DOI:10.12015/issn.1674-8034.2024.12.031.

[1]
BARISANO G, SEPEHRBAND F, MA S, et al. Clinical 7 T MRI: are we there yet? A review about magnetic resonance imaging at ultra-high field[J/OL]. Br J Radiol, 2019, 92(1094): 20180492 [2024-09-27]. https://pubmed.ncbi.nlm.nih.gov/30359093/. DOI: 10.1259/bjr.20180492.
[2]
MORRISON M A, LUPO J M. 7-T magnetic resonance imaging in the management of brain tumors[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 83-102. DOI: 10.1016/j.mric.2020.09.007.
[3]
VACHHA B, HUANG S Y. MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond[J/OL]. Eur Radiol Exp, 2021, 5(1): 35 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/34435246/. DOI: 10.1186/s41747-021-00216-2.
[4]
ZHAO B B, ZHOU Y C, ZONG X P. Effects of prospective motion correction on perivascular spaces at 7T MRI evaluated using motion artifact simulation[J]. Magn Reson Med, 2024, 92(3): 1079-1094. DOI: 10.1002/mrm.30126.
[5]
SILVA R V, MORR A S, MUELLER S, et al. Contribution of tissue inflammation and blood-brain barrier disruption to brain softening in a mouse model of multiple sclerosis[J/OL]. Front Neurosci, 2021, 15: 701308 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/34497486/. DOI: 10.3389/fnins.2021.701308.
[6]
OSUAFOR C N, RUA C, MACKINNON A D, et al. Visualisation of lenticulostriate arteries using contrast-enhanced time-of-flight magnetic resonance angiography at 7 Tesla[J/OL]. Sci Rep, 2022, 12(1): 20306 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/36434036/. DOI: 10.1038/s41598-022-24832-z.
[7]
CHENG K, DUAN Q, HU J X, et al. Evaluation of postcontrast images of intracranial tumors at 7T and 3T MRI: an intra-individual comparison study[J]. CNS Neurosci Ther, 2023, 29(2): 559-565. DOI: 10.1111/cns.14036.
[8]
KILSDONK I D, JONKMAN L E, KLAVER R, et al. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study[J]. Brain, 2016, 139(Pt 5): 1472-1481. DOI: 10.1093/brain/aww037.
[9]
SCHMITZ-ABECASSIS B, VAN OSCH M P, DIRVEN L, et al. P09.04 T2 hyperintense regions on MRI in gliomas: a comparison between routine clinical MRI and 7T MRI[J/OL]. Neuro-Oncology, 2021, 23(Supplement_2): ii27 [2024-08-25]. https://academic.oup.com/neuro-oncology/article/23/Supplement_2/ii27/6366810?login=false. DOI: 10.1093/neuonc/noab180.092.
[10]
DE COCKER L J, LINDENHOLZ A, ZWANENBURG J J, et al. Clinical vascular imaging in the brain at 7T[J/OL]. NeuroImage, 2018, 168: 452-458 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/27867089/. DOI: 10.1016/j.neuroimage.2016.11.044.
[11]
ALLEN E J, ST-YVES G, WU Y H, et al. A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence[J]. Nat Neurosci, 2022, 25(1): 116-126. DOI: 10.1038/s41593-021-00962-x.
[12]
CHEN J J, UTHAYAKUMAR B, HYDER F. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease[J]. J Cereb Blood Flow Metab, 2022, 42(7): 1139-1162. DOI: 10.1177/0271678X221077338.
[13]
DRESBACH S, HUBER L R, GULBAN O F, et al. Layer-fMRI VASO with short stimuli and event-related designs at 7 T[J/OL]. NeuroImage, 2023, 279: 120293 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/37562717/. DOI: 10.1016/j.neuroimage.2023.120293.
[14]
SPARACIA G, PARLA G, MAMONE G, et al. Resting-state functional magnetic resonance imaging for surgical neuro-oncology planning: towards a standardization in clinical settings[J/OL]. Brain Sci, 2021, 11(12): 1613 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/34942915/. DOI: 10.3390/brainsci11121613.
[15]
GROOT J M, MILETIC S, ISHERWOOD S J S, et al. A high-resolution 7 Tesla resting-state fMRI dataset optimized for studying the subcortex[J/OL]. Data Brief, 2024, 55: 110668 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/39044905/. DOI: 10.1016/j.dib.2024.110668.
[16]
FEINBERG D A, BECKETT A J S, VU A T, et al. Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla[J]. Nat Methods, 2023, 20(12): 2048-2057. DOI: 10.1038/s41592-023-02068-7.
[17]
ZAKARIA R, JENKINSON M D, RADON M, et al. Immune checkpoint inhibitor treatment of brain metastasis associated with a less invasive growth pattern, higher T-cell infiltration and raised tumor ADC on diffusion weighted MRI[J]. Cancer Immunol Immunother, 2023, 72(10): 3387-3393. DOI: 10.1007/s00262-023-03499-z.
[18]
LUO H C, HE L, CHENG W Q, et al. The diagnostic value of intravoxel incoherent motion imaging in differentiating high-grade from low-grade gliomas: a systematic review and meta-analysis[J/OL]. Br J Radiol, 2021, 94(1121): 20201321 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/33876653/. DOI: 10.1259/bjr.20201321.
[19]
PANG H P, DANG X F, REN Y, et al. DKI can distinguish high-grade gliomas from IDH1-mutant low-grade gliomas and correlate with their different nuclear-to-cytoplasm ratio: a localized biopsy-based study[J]. Eur Radiol, 2024, 34(11): 7539-7551. DOI: 10.1007/s00330-023-10325-8.
[20]
YANG X L, NIU W J, WU K, et al. Diffusion kurtosis imaging-based habitat analysis identifies high-risk molecular subtypes and heterogeneity matching in diffuse gliomas[J]. Ann Clin Transl Neurol, 2024, 11(8): 2073-2087. DOI: 10.1002/acn3.52128.
[21]
VERMA G, MOHAN S, NASRALLAH M P, et al. Non-invasive detection of 2-hydroxyglutarate in IDH-mutated gliomas using two-dimensional localized correlation spectroscopy (2D L-COSY) at 7 Tesla[J/OL]. J Transl Med, 2016, 14(1): 274 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/27659543/. DOI: 10.1186/s12967-016-1035-1.
[22]
MA X X, CHENG K, CHENG G, et al. Apparent diffusion coefficient as imaging biomarker for identifying IDH mutation, 1p19q codeletion, and MGMT promoter methylation status in patients with glioma[J]. J Magn Reson Imaging, 2023, 58(3): 732-738. DOI: 10.1002/jmri.28589.
[23]
DURY R J, LOURDUSAMY A, MACARTHUR D C, et al. Meta-analysis of apparent diffusion coefficient in pediatric medulloblastoma, ependymoma, and pilocytic astrocytoma[J]. J Magn Reson Imaging, 2022, 56(1): 147-157. DOI: 10.1002/jmri.28007.
[24]
KORNAROPOULOS E N, ZACHARAKI E I, ZERBIB P, et al. Joint deformable image registration and ADC map regularization: application to DWI-based lymphoma classification[J]. IEEE J Biomed Health Inform, 2022, 26(7): 3151-3162. DOI: 10.1109/JBHI.2022.3156009.
[25]
YAMASHITA K, HIWATASHI A, TOGAO O, et al. Diagnostic utility of intravoxel incoherent motion mr imaging in differentiating primary central nervous system lymphoma from glioblastoma multiforme[J]. J Magn Reson Imaging, 2016, 44(5): 1256-1261. DOI: 10.1002/jmri.25261.
[26]
TOGAO O, CHIKUI T, TOKUMORI K, et al. Gamma distribution model of diffusion MRI for the differentiation of primary central nerve system lymphomas and glioblastomas[J/OL]. PLoS One, 2020, 15(12): e0243839 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/33315914/. DOI: 10.1371/journal.pone.0243839.
[27]
KIM D K, LEE S Y, LEE J, et al. Deep learning-based k-space-to-image reconstruction and super resolution for diffusion-weighted imaging in whole-spine MRI[J/OL]. Magn Reson Imaging, 2024, 105: 82-91 [2024-08-25]. https://pubmed.ncbi.nlm.nih.gov/37939970/. DOI: 10.1016/j.mri.2023.11.003.
[28]
ZAMANIAN M, ABEDI I, DANAZADEH F, et al. Post-chemo-radiotherapy response and pseudo-progression evaluation on glioma cell types by multi-parametric magnetic resonance imaging: a prospective study[J/OL]. BMC Med Imaging, 2023, 23(1): 176 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/37932656/. DOI: 10.1186/s12880-023-01135-x.
[29]
ELLINGSON B M, SAHEBJAM S, KIM H J, et al. Pretreatment ADC histogram analysis is a predictive imaging biomarker for bevacizumab treatment but not chemotherapy in recurrent glioblastoma[J]. AJNR Am J Neuroradiol, 2014, 35(4): 673-679. DOI: 10.3174/ajnr.A3748.
[30]
SOMEYA Y, IIMA M, IMAI H, et al. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers[J/OL]. Sci Rep, 2022, 12(1): 6523 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/35444193/. DOI: 10.1038/s41598-022-10081-7.
[31]
SZUBERT-FRANCZAK A E, NADUK-OSTROWSKA M, PASICZ K, et al. Intravoxel incoherent motion magnetic resonance imaging: basic principles and clinical applications[J/OL]. Pol J Radiol, 2020, 85: e624-e635 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/33376564/. DOI: 10.5114/pjr.2020.101476.
[32]
MAXIMOV I I, VELLMER S. Isotropically weighted intravoxel incoherent motion brain imaging at 7T[J/OL]. Magn Reson Imaging, 2019, 57: 124-132 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/30472300/. DOI: 10.1016/j.mri.2018.11.007.
[33]
TIAN Q Y, FAN Q Y, WITZEL T, et al. Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients[J/OL]. Sci Data, 2022, 9(1): 7 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/35042861/. DOI: 10.1038/s41597-021-01092-6.
[34]
SARTORETTI E, SARTORETTI T, WYSS M, et al. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases[J/OL]. Sci Rep, 2021, 11(1): 5506 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/33750899/. DOI: 10.1038/s41598-021-85168-8.
[35]
QAMAR S, KING A D, AI Q H, et al. Pre-treatment amide proton transfer imaging predicts treatment outcome in nasopharyngeal carcinoma[J]. Eur Radiol, 2020, 30(11): 6339-6347. DOI: 10.1007/s00330-020-06985-5.
[36]
ZHOU J Y, ZAISS M, KNUTSSON L, et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: application to brain tumors[J]. Magn Reson Med, 2022, 88(2): 546-574. DOI: 10.1002/mrm.29241.
[37]
WU M H, JIANG T L, GUO M, et al. Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas[J]. Eur Radiol, 2024, 34(5): 2986-2996. DOI: 10.1007/s00330-023-10343-6.
[38]
LIU Z, WEN J, WANG M, et al. Breast amide proton transfer imaging at 3T: diagnostic performance and association with pathologic characteristics[J]. J Magn Reson Imaging, 2023, 57(3): 824-833. DOI: 10.1002/jmri.28335.
[39]
PAECH D, DREHER C, REGNERY S, et al. Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients[J]. Eur Radiol, 2019, 29(9): 4957-4967. DOI: 10.1007/s00330-019-06066-2.
[40]
PARK Y W, CHOI D, PARK J E, et al. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation[J/OL]. Sci Rep, 2021, 11(1): 2913 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/33536499/. DOI: 10.1038/s41598-021-82467-y.
[41]
SMITH E J, NAIK A, SHAFFER A, et al. Differentiating radiation necrosis from tumor recurrence: a systematic review and diagnostic meta-analysis comparing imaging modalities[J]. J Neurooncol, 2023, 162(1): 15-23. DOI: 10.1007/s11060-023-04262-1.
[42]
PAPROTTKA K J, KLEINER S, PREIBISCH C, et al. Fully automated analysis combining [18F]-FET-PET and multiparametric MRI including DSC perfusion and APTw imaging: a promising tool for objective evaluation of glioma progression[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4445-4455. DOI: 10.1007/s00259-021-05427-8.
[43]
HOU H M, DIAO Y Z, YU J C, et al. Differentiation of true progression from treatment response in high-grade glioma treated with chemoradiation: a comparison study of 3D-APTW and 3D-PcASL imaging and DWI[J/OL]. NMR Biomed, 2023, 36(1): e4821 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/36031734/. DOI: 10.1002/nbm.4821.
[44]
MEYER H J, HAMERLA G, LEIFELS L, et al. Histogram analysis parameters derived from DCE-MRI in head and neck squamous cell cancer-Associations with microvessel density[J/OL]. Eur J Radiol, 2019, 120: 108669 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/31542700/. DOI: 10.1016/j.ejrad.2019.108669.
[45]
HU Y, ZHANG Y, CHENG J L. Diagnostic value of molybdenum target combined with DCE-MRI in different types of breast cancer[J]. Oncol Lett, 2019, 18(4): 4056-4063. DOI: 10.3892/ol.2019.10746.
[46]
YANG H Q, ZHU Z Y, LONG C, et al. Quantitative and qualitative parameters of DCE-MRI predict CDKN2A/B homozygous deletion in gliomas[J]. Acad Radiol, 2024, 31(8): 3355-3365. DOI: 10.1016/j.acra.2024.02.017.
[47]
BREDA-YEPES M, RODRÍGUEZ-HERNÁNDEZ L A, GÓMEZ-FIGUEROA E, et al. Relative cerebral blood volume as response predictor in the treatment of recurrent glioblastoma with anti-angiogenic therapy[J/OL]. Clin Neurol Neurosurg, 2023, 233: 107904 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/37499302/. DOI: 10.1016/j.clineuro.2023.107904.
[48]
BOXERMAN J L, SNYDER B S, BARBORIAK D P, et al. Early post-bevacizumab change in rCBV from DSC-MRI identifies pseudoresponse in recurrent glioblastoma: results from ACRIN 6677/RTOG 0625[J/OL]. Front Oncol, 2023, 13: 1061502 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/36776298/. DOI: 10.3389/fonc.2023.1061502.
[49]
VAN DEN KERKHOF M, DE JONG J J A, VOORTER P H M, et al. Blood-brain barrier integrity decreases with higher blood pressure: a 7T DCE-MRI study[J]. Hypertension, 2024, 81(10): 2162-2172. DOI: 10.1161/HYPERTENSIONAHA.123.22617.
[50]
CANJELS L P W, JANSEN J F A, VAN DEN KERKHOF M, et al. 7T dynamic contrast-enhanced MRI for the detection of subtle blood-brain barrier leakage[J]. J Neuroimaging, 2021, 31(5): 902-911. DOI: 10.1111/jon.12894.
[51]
LIN Z P, MENG Z Y, WANG T Y, et al. Predicting the onset of ischemic stroke with fast high-resolution 3D MR spectroscopic imaging[J]. J Magn Reson Imaging, 2023, 58(3): 838-847. DOI: 10.1002/jmri.28596.
[52]
GAST L V, PLATT T, NAGEL A M, et al. Recent technical developments and clinical research applications of sodium (23Na) MRI[J/OL]. Prog Nucl Magn Reson Spectrosc, 2023, 138/139: 1-51 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/38065665/. DOI: 10.1016/j.pnmrs.2023.04.002.
[53]
CADRIEN C, SHARMA S, LAZEN P, et al. 7 Tesla magnetic resonance spectroscopic imaging predicting IDH status and glioma grading[J/OL]. Cancer Imaging, 2024, 24(1): 67 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/38802883/. DOI: 10.1186/s40644-024-00704-9.
[54]
BOOTH T C, WIEGERS E C, WARNERT E A H, et al. High-grade glioma treatment response monitoring biomarkers: a position statement on the evidence supporting the use of advanced MRI techniques in the clinic, and the latest bench-to-bedside developments. part 2: spectroscopy, chemical exchange saturation, multiparametric imaging, and radiomics[J/OL]. Front Oncol, 2021, 11: 811425 [2024-08-27]. https://pubmed.ncbi.nlm.nih.gov/35340697/. DOI: 10.3389/fonc.2021.811425.
[55]
HANGEL G, CADRIEN C, LAZEN P, et al. High-resolution metabolic imaging of high-grade gliomas using 7T-CRT-FID-MRSI[J/OL]. Neuroimage Clin, 2020, 28: 102433 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/32977210/. DOI: 10.1016/j.nicl.2020.102433.
[56]
LADD M E, BACHERT P, MEYERSPEER M, et al. Pros and cons of ultra-high-field MRI/MRS for human application[J/OL]. Prog Nucl Magn Reson Spectrosc, 2018, 109: 1-50 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/30527132/. DOI: 10.1016/j.pnmrs.2018.06.001.
[57]
HANGEL G, JAIN S, SPRINGER E, et al. High-resolution metabolic mapping of gliomas via patch-based super-resolution magnetic resonance spectroscopic imaging at 7T[J/OL]. NeuroImage, 2019, 191: 587-595 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/30772399/. DOI: 10.1016/j.neuroimage.2019.02.023.
[58]
HALLER S, HAACKE E M, THURNHER M M, et al. Susceptibility-weighted imaging: technical essentials and clinical neurologic applications[J]. Radiology, 2021, 299(1): 3-26. DOI: 10.1148/radiol.2021203071.
[59]
TAY K L, LEASON S R, DAWES L C, et al. Haemorrhage and calcification on susceptibility-weighted imaging: a quick and reliable qualitative technique for differentiating lesions with ambiguous phase[J]. Clin Neuroradiol, 2022, 32(3): 705-715. DOI: 10.1007/s00062-021-01094-2.
[60]
BELLIVEAU J G, BAUMAN G S, TAY K Y, et al. Initial Investigation into Microbleeds and White Matter Signal Changes following Radiotherapy for Low-Grade and Benign Brain Tumors Using Ultra-High-Field MRI Techniques[J]. AJNR Am J Neuroradiol, 2017, 38(12): 2251-2256. DOI: 10.3174/ajnr.A5395.
[61]
NATSUMEDA M, MATSUZAWA H, WATANABE M, et al. SWI by 7T MR imaging for the microscopic imaging diagnosis of astrocytic and oligodendroglial tumors[J]. AJNR Am J Neuroradiol, 2022, 43(11): 1575-1581. DOI: 10.3174/ajnr.A7666.
[62]
KEITH G A, WOODWARD R A, HOPKINS T, et al. Towards clinical translation of 7 Tesla MRI in the human brain[J/OL]. IPEM-Translation, 2024, 9: 100025 [2024-09-04]. https://www.sciencedirect.com/science/article/pii/S2667258824000037. DOI: 10.1016/j.ipemt.2024.100025.
[63]
MARTÍN-NOGUEROL T, SANTOS-ARMENTIA E, RAMOS A, et al. An update on susceptibility-weighted imaging in brain gliomas[J]. Eur Radiol, 2024, 34(10): 6763-6775. DOI: 10.1007/s00330-024-10703-w.
[64]
LABELLA D, KHANNA O, MCBURNEY-LIN S, et al. A multi-institutional meningioma MRI dataset for automated multi-sequence image segmentation[J/OL]. Sci Data, 2024, 11(1): 496 [2024-09-04]. https://pubmed.ncbi.nlm.nih.gov/38750041/. DOI: 10.1038/s41597-024-03350-9.

PREV Progress in cerebellar high-field and ultra-high-field magnetic resonance imaging and their applications in neurodegenerative diseases
NEXT Advances in MRI of the glymphatic system in brain tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn