Share:
Share this content in WeChat
X
Review
Research progress of multimodal imaging techniques in high myopia
ZHOU Lin  CHAI Hua  YUAN Haoyu  WU Xiaorong 

Cite this article as: ZHOU L, CHAI H, YUAN H Y, et al. Research progress of multimodal imaging techniques in high myopia[J]. Chin J Magn Reson Imaging, 2024, 15(12): 212-217. DOI:10.12015/issn.1674-8034.2024.12.033.


[Abstract] The global prevalence of myopia is increasing annually, with an estimated 2 billion people worldwide suffering from the condition, of which approximately 10% are classified as high myopia (HM). This irreversible condition poses significant challenges to daily life, highlighting the urgency of conducting in-depth research and developing effective treatments. Patients with HM not only experience changes in the retina but also alterations in the central nervous system. Currently, these brain alterations are primarily detected using multi-modal magnetic resonance imaging (MRI) technology, as conventional eye examinations and artificial intelligence technologies are insufficient for identifying changes in the central nervous system. Therefore, this study aims to elucidate the pathological changes in the central nervous system induced by HM, with the goal of enhancing understanding of HM-related central nervous system research and providing valuable insights for clinical diagnosis and treatment..
[Keywords] pathological high myopia;central nervous system;magnetic resonance imaging;artificial intelligence;structural magnetic resonance imaging;functional magnetic resonance imaging

ZHOU Lin   CHAI Hua   YUAN Haoyu   WU Xiaorong*  

Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang330006, China

Corresponding author: WU X R, E-mail: wxr98021@126.com

Conflicts of interest   None.

Received  2024-09-19
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.033
Cite this article as: ZHOU L, CHAI H, YUAN H Y, et al. Research progress of multimodal imaging techniques in high myopia[J]. Chin J Magn Reson Imaging, 2024, 15(12): 212-217. DOI:10.12015/issn.1674-8034.2024.12.033.

[1]
FLITCROFT D I, HE M G, JONAS J B, et al. IMI - defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies[J/OL]. Invest Ophthalmol Vis Sci, 2019, 60(3): M20-M30 [2024-09-18]. https://pubmed.ncbi.nlm.nih.gov/30817826/. DOI: 10.1167/iovs.18-25957.
[2]
YAN X, KANG Z F, LI S J, et al. Research progress of fundus morphology in high myopia[J]. Int Eye Sci, 2023, 23(2): 212-216. DOI: 10.3980/j.issn.1672-5123.2023.2.06.
[3]
DU R, XIE S Q, IGARASHI-YOKOI T, et al. Continued increase of axial length and its risk factors in adults with high myopia[J]. JAMA Ophthalmol, 2021, 139(10): 1096-1103. DOI: 10.1001/jamaophthalmol.2021.3303.
[4]
FLORES-MORENO I, PUERTAS M, ALMAZÁN-ALONSO E, et al. Pathologic myopia and severe pathologic myopia: correlation with axial length[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(1): 133-140. DOI: 10.1007/s00417-021-05372-0.
[5]
LEE S S, MACKEY D A. Prevalence and risk factors of myopia in young adults: review of findings from the raine study[J/OL]. Front Public Health, 2022, 10: 861044 [2024-09-18]. https://pubmed.ncbi.nlm.nih.gov/35570945/. DOI: 10.3389/fpubh.2022.861044.
[6]
BISWAS S, KAREH A EL, QURESHI M, et al. The influence of the environment and lifestyle on myopia[J/OL]. J Physiol Anthropol, 2024, 43(1): 7 [2024-09-18]. https://pubmed.ncbi.nlm.nih.gov/38297353/. DOI: 10.1186/s40101-024-00354-7.
[7]
BAIRD P N, SAW S M, LANCA C, et al. Myopia[J/OL]. Nat Rev Dis Primers, 2020, 6(1): 99 [2024-09-18]. https://pubmed.ncbi.nlm.nih.gov/33328468/. DOI: 10.1038/s41572-020-00231-4.
[8]
SHAVERDI Y, SETAREHDAN S K, TREUE S, et al. Orchestration of saccadic eye-movements by brain rhythms in macaque Frontal Eye Field[J/OL]. Sci Rep, 2023, 13(1): 22725 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/38123575/. DOI: 10.1038/s41598-023-49346-0.
[9]
RAPAN L, FROUDIST-WALSH S, NIU M Q, et al. Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe[J/OL]. Elife, 2023, 12: e82850 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/37578332/. DOI: 10.7554/eLife.82850.
[10]
ZHANG X P, LIU L, JIN X M, et al. Altered time-varying local spontaneous brain activity pattern in patients with high myopia: a dynamic amplitude of low-frequency fluctuations study[J]. Neuroradiology, 2023, 65(1): 157-166. DOI: 10.1007/s00234-022-03033-5.
[11]
RODENBECK S J, MACKAY D D. Examining the ocular fundus in neurology[J]. Curr Opin Neurol, 2019, 32(1): 105-110. DOI: 10.1097/WCO.0000000000000637.
[12]
ZHAO X J, DING X Y, LYU C C, et al. Morphological characteristics and visual acuity of highly myopic eyes with different severities of myopic maculopathy[J]. Retina, 2020, 40(3): 461-467. DOI: 10.1097/IAE.0000000000002418.
[13]
WOJTKOWSKI M, BAJRASZEWSKI T, GORCZYŃSKA I, et al. Ophthalmic imaging by spectral optical coherence tomography[J]. Am J Ophthalmol, 2004, 138(3): 412-419. DOI: 10.1016/j.ajo.2004.04.049.
[14]
AUMANN S, DONNER S, FISCHER J, et al. Optical coherence tomography (OCT): principle and technical realization[M]// High Resolution Imaging in Microscopy and Ophthalmology. Cham: Springer, 2019: 59-85. DOI: 10.1007/978-3-030-16638-0_3.
[15]
ONG S S, CUMMINGS T J, VAJZOVIC L, et al. Comparison of optical coherence tomography with fundus photographs, fluorescein angiography, and histopathologic analysis in assessing Coats disease[J]. JAMA Ophthalmol, 2019, 137(2): 176-183. DOI: 10.1001/jamaophthalmol.2018.5654.
[16]
LI Y, ZHENG F H, FOO L L, et al. Advances in OCT imaging in myopia and pathologic myopia[J/OL]. Diagnostics, 2022, 12(6): 1418 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/35741230/. DOI: 10.3390/diagnostics12061418.
[17]
CORVI F, ZICARELLI F, AIRALDI M, et al. Comparison between widefield optical coherence tomography devices in eyes with high myopia[J/OL]. Diagnostics, 2021, 11(4): 658 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/33917400/. DOI: 10.3390/diagnostics11040658.
[18]
JAVED A, KHANNA A, PALMER E, et al. Optical coherence tomography angiography: a review of the current literature[J/OL]. J Int Med Res, 2023, 51(7): 3000605231187933 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/37498178/. DOI: 10.1177/03000605231187933.
[19]
ENZ T J, MALOCA P M, TSCHOPP M, et al. Volume-rendered optical coherence tomography angiography during ocular interventions: advocating for noninvasive intraoperative retinal perfusion monitoring[J/OL]. J Biophotonics, 2022, 15(12): e202200169 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/36089335/. DOI: 10.1002/jbio.202200169.
[20]
XU D H, ZHU T, WANG X L, et al. Observation of retinal blood flow density in patients with moderate to high myopia by global swept ultra-wide-angle OCTA[J]. J Clin Ophthalmol, 2024, 32(2): 112-116. DOI: 10.3969/j.issn.1006-8422.2024.02.004.
[21]
ZHANG K, YANG X H, WANG Z Y, et al. Observation of macular hole associated with retinoschisis in patients with high myopia[J]. Graefes Arch Clin Exp Ophthalmol, 2023, 261(1): 57-65. DOI: 10.1007/s00417-022-05766-8.
[22]
SHEN X Q, ZHOU T Y, SUN Z H, et al. Trends in application of fundus fluorescein angiography in fundus diseases during a recent ten-year period[J/OL]. Photodiagnosis Photodyn Ther, 2024, 46: 104029 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/38428785/. DOI: 10.1016/j.pdpdt.2024.104029.
[23]
YANG M, HAN J, PARK J I, et al. Prediction of visual acuity in pathologic myopia with myopic choroidal neovascularization treated with anti-vascular endothelial growth factor using a deep neural network based on optical coherence tomography images[J/OL]. Biomedicines, 2023, 11(8): 2238 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/37626734/. DOI: 10.3390/biomedicines11082238.
[24]
GIORNO P, IACONO P, SCARINCI F, et al. Microvasculature changes of myopic choroidal neovascularization and the predictive value of feeder vessel disappearance after ranibizumab treatment revealed using optical coherence tomography angiography[J]. Ophthalmologica, 2020, 243(4): 263-270. DOI: 10.1159/000504755.
[25]
RUIZ-MEDRANO J, ALMAZÁN-ALONSO E, PUERTAS M, et al. Assessment and role of artery-vein complex in myopic choroidal neovascularization using optical coherence tomography angiography[J]. Retina, 2023, 43(9): 1544-1549. DOI: 10.1097/IAE.0000000000003852.
[26]
KALOGEROMITROS D C, MAKRIS M P, AGGELIDES X S, et al. Allergy skin testing in predicting adverse reactions to fluorescein: a prospective clinical study[J]. Acta Ophthalmol, 2011, 89(5): 480-483. DOI: 10.1111/j.1755-3768.2009.01722.x.
[27]
MEO S A, ABUKHALAF A A, ALOMAR A A, et al. Magnetic Resonance Imaging (MRI) and neurological manifestations in SARS-CoV-2 patients[J]. Eur Rev Med Pharmacol Sci, 2021, 25(2): 1101-1108. DOI: 10.26355/eurrev_202101_24681.
[28]
HAHN A, LANZENBERGER R, KASPER S. Making sense of connectivity[J]. Int J Neuropsychopharmacol, 2019, 22(3): 194-207. DOI: 10.1093/ijnp/pyy100.
[29]
KIM T Y, LEE M W, BAEK S K, et al. Comparison of retinal layer thicknesses of highly myopic eyes and normal eyes[J]. Korean J Ophthalmol, 2020, 34(6): 469-477. DOI: 10.3341/kjo.2020.0012.
[30]
CHEN X Y, HE H L, XU J, et al. Clinical features of fundus tessellation and its relationship with myopia: a systematic review and meta-analysis[J]. Ophthalmol Ther, 2023, 12(6): 3159-3175. DOI: 10.1007/s40123-023-00802-0.
[31]
YE Y H, ARUMA A, ZHAO W X, et al. A novel quick contrast sensitivity function test in Chinese adults with myopia and its related parameters[J]. Albrecht Von Graefes Arch Fur Klin Und Exp Ophthalmol, 2023, 261(7): 2071-2080. DOI: 10.1007/s00417-023-06010-7.
[32]
LI Z X, LIU R, XIAO O, et al. Progression of myopic maculopathy in highly myopic Chinese eyes[J]. Invest Ophthalmol Vis Sci, 2019, 60(4): 1096-1104. DOI: 10.1167/iovs.18-25800.
[33]
TRAN A, MACLEAN M W, HADID V, et al. Neuronal mechanisms of motion detection underlying blindsight assessed by functional magnetic resonance imaging (fMRI)[J/OL]. Neuropsychologia, 2019, 128: 187-197 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/30825453/. DOI: 10.1016/j.neuropsychologia.2019.02.012.
[34]
MILLS-FINNERTY C, FRANGOS E, ALLEN K, et al. Functional magnetic resonance imaging studies in sexual medicine: a primer[J]. J Sex Med, 2022, 19(7): 1073-1089. DOI: 10.1016/j.jsxm.2022.03.217.
[35]
LEE M H, SMYSER C D, SHIMONY J S. Resting-state fMRI: a review of methods and clinical applications[J]. AJNR Am J Neuroradiol, 2013, 34(10): 1866-1872. DOI: 10.3174/ajnr.A3263.
[36]
NGUYEN H M, CHEN J Y, GLOVER G H. Morphological component analysis of functional MRI brain networks[J]. IEEE Trans Biomed Eng, 2022, 69(10): 3193-3204. DOI: 10.1109/TBME.2022.3162606.
[37]
LUO Y, SUN T T, MA C C, et al. Alterations of brain networks in Alzheimer's disease and mild cognitive impairment: a resting state fMRI study based on a population-specific brain template[J/OL]. Neuroscience, 2021, 452: 192-207 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/33197505/. DOI: 10.1016/j.neuroscience.2020.10.023.
[38]
DRYBURGH E, MCKENNA S, REKIK I. Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder[J]. Brain Imaging Behav, 2020, 14(5): 1769-1778. DOI: 10.1007/s11682-019-00111-w.
[39]
RANZENBERGER L R, DAS J M, SNYDER T. Diffusion Tensor Imaging[J/OL]. In: StatPearls, 2023 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/30726046/. DOI: 10.1212/WNL.0b013e3181d3e43a.
[40]
LIU J Y, LEI Y H, DIAO Y Y, et al. Altered whole-brain gray matter volume in form-deprivation myopia rats based on voxel-based morphometry: a pilot study[J/OL]. Front Neurosci, 2023, 17: 1113578 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/37144093/. DOI: 10.3389/fnins.2023.1113578.
[41]
WANG H H, WEN H W, LI J, et al. Characterization of brain microstructural abnormalities in high myopia patients: a preliminary diffusion kurtosis imaging study[J]. Korean J Radiol, 2021, 22(7): 1142-1151. DOI: 10.3348/kjr.2020.0178.
[42]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of using both voxel- and surface-based morphometry in cortical morphology analysis: a review of various applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[43]
LI Q, GUO M X, DONG H H, et al. Voxel-based analysis of regional gray and white matter concentration in high myopia[J/OL]. Vision Res, 2012, 58: 45-501113578 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/22402232/. DOI: 10.1016/j.visres.2012.02.005.
[44]
QIU D Q, TAN L H, ZHOU K, et al. Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development[J]. NeuroImage, 2008, 41(2): 223-232. DOI: 10.1016/j.neuroimage.2008.02.023.
[45]
WU Y J, WU N, HUANG X, et al. Evidence of cortical thickness reduction and disconnection in high myopia[J/OL]. Sci Rep, 2020, 10(1): 16239 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/33004887/. DOI: 10.1038/s41598-020-73415-3.
[46]
KIMMIG H, GREENLEE M W, GONDAN M, et al. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects[J]. Exp Brain Res, 2001, 141(2): 184-194. DOI: 10.1007/s002210100844.
[47]
HUANG X, ZHOU F Q, HU Y X, et al. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study[J/OL]. Neuropsychiatr Dis Treat, 2016, 12: 2949-2956 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/27881920/. DOI: 10.2147/NDT.S118326.
[48]
MIRZAJANI A, GHORBANI M, RASULI B, et al. Effect of induced high myopia on functional MRI signal changes[J/OL]. Phys Med, 2017, 37: 32-36 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/28535912/. DOI: 10.1016/j.ejmp.2017.04.004.
[49]
CHENG Y, HUANG X, HU Y X, et al. Comparison of intrinsic brain activity in individuals with low/moderate myopia versus high myopia revealed by the amplitude of low-frequency fluctuations[J]. Acta Radiol, 2020, 61(4): 496-507. DOI: 10.1177/0284185119867633.
[50]
WU Y J, LI W S. Application of nuclear magnetic resonance in the clinical study of high myopia[J]. Int Eye Sci, 2023, 23(4): 612-615. DOI: 10.3980/j.issn.1672-5123.2023.4.16.
[51]
WALDSTEIN S M, VOGL W D, BOGUNOVIC H, et al. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography[J]. JAMA Ophthalmol, 2020, 138(7): 740-747. DOI: 10.1001/jamaophthalmol.2020.1376.
[52]
DHIMAN R, RAKHEJA V, GUPTA V, et al. Current concepts in the management of childhood myopia[J]. Indian J Ophthalmol, 2022, 70(8): 2800-2815. DOI: 10.4103/ijo.IJO_2098_21.
[53]
OHNO-MATSUI K, WU P C, YAMASHIRO K, et al. IMI pathologic myopia[J/OL]. Invest Ophthalmol Vis Sci, 2021, 62(5): 5 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/33909033/. DOI: 10.1167/iovs.62.5.5.
[54]
SANKARIDURG P, TAHHAN N, KANDEL H, et al. IMI impact of myopia[J/OL]. Invest Ophthalmol Vis Sci, 2021, 62(5): 2 [2024-08-16]. https://pubmed.ncbi.nlm.nih.gov/33909036/. DOI: 10.1167/iovs.62.5.2.
[55]
TING D S W, PASQUALE L R, PENG L, et al. Artificial intelligence and deep learning in ophthalmology[J]. Br J Ophthalmol, 2019, 103(2): 167-175. DOI: 10.1136/bjophthalmol-2018-313173.
[56]
HE S, BULLOCH G, ZHANG L X, et al. Cross-camera performance of deep learning algorithms to diagnose common ophthalmic diseases: a comparative study highlighting feasibility to portable fundus camera use[J]. Curr Eye Res, 2023, 48(9): 857-863. DOI: 10.1080/02713683.2023.2215984.
[57]
O'BYRNE C, ABBAS A, KOROT E, et al. Automated deep learning in ophthalmology: AI that can build AI[J]. Curr Opin Ophthalmol, 2021, 32(5): 406-412. DOI: 10.1097/ICU.0000000000000779.
[58]
YANG L W Y, NG W Y, FOO L L, et al. Deep learning-based natural language processing in ophthalmology: applications, challenges and future directions[J]. Curr Opin Ophthalmol, 2021, 32(5): 397-405. DOI: 10.1097/ICU.0000000000000789.
[59]
SAYRES R, TALY A, RAHIMY E, et al. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy[J]. Ophthalmology, 2019, 126(4): 552-564. DOI: 10.1016/j.ophtha.2018.11.016.
[60]
MASAYOSHI K, KATADA Y, OZAWA N, et al. Deep learning segmentation of non-perfusion area from color fundus images and AI-generated fluorescein angiography[J/OL]. Sci Rep, 2024, 14(1): 10801 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/38734727/. DOI: 10.1038/s41598-024-61561-x.
[61]
ZHENG B, JIANG Q, LU B, et al. Five-category intelligent auxiliary diagnosis model of common fundus diseases based on fundus images[J/OL]. Transl Vis Sci Technol, 2021, 10(7): 20 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/34132760/. DOI: 10.1167/tvst.10.7.20.
[62]
LIN D R, XIONG J H, LIU C X, et al. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study[J/OL]. Lancet Digit Health, 2021, 3(8): e486-e495 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/34325853/. DOI: 10.1016/S2589-7500(21)00086-8.
[63]
SHAH P, MISHRA D, SHANMUGAM M, et al. Acceptability of artificial intelligence-based retina screening in general population[J]. Indian J Ophthalmol, 2022, 70(4): 1140-1144. DOI: 10.4103/ijo.IJO_1840_21.
[64]
MAZZUCA D, BORSELLI M, GRATTERI S, et al. Applications and current medico-legal challenges of telemedicine in ophthalmology[J/OL]. Int J Environ Res Public Health, 2022, 19(9): 5614 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/35565003/. DOI: 10.3390/ijerph19095614.
[65]
SHAHBAZ R, SALDUCCI M. Law and order of modern ophthalmology: Teleophthalmology, smartphones legal and ethics[J]. Eur J Ophthalmol, 2021, 31(1): 13-21. DOI: 10.1177/1120672120934405.
[66]
PAN Y H, LIU J R, CAI Y T, et al. Fundus image classification using Inception V3 and ResNet-50 for the early diagnostics of fundus diseases[J/OL]. Front Physiol, 2023, 14: 1126780 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/36875027/. DOI: 10.3389/fphys.2023.1126780.
[67]
WANG S Z, SHEN W Y, GAO Z Y, et al. Enhancing the ophthalmic AI assessment with a fundus image quality classifier using local and global attention mechanisms[J/OL]. Front Med, 2024, 11: 1418048 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/39175821/. DOI: 10.3389/fmed.2024.1418048.

PREV Advances in MRI of the glymphatic system in brain tumors
NEXT Research progress on the correlation between epicardial adipose tissue and cardiovascular diseases based on non-invasive imaging techniques
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn