Share:
Share this content in WeChat
X
Review
Research progress on the correlation between epicardial adipose tissue and cardiovascular diseases based on non-invasive imaging techniques
SONG Jiamin  LI Rui  LEI Feng  TANG Yangyang  GUO Shunlin 

Cite this article as: SONG J M, LI R, LEI F, et al. Research progress on the correlation between epicardial adipose tissue and cardiovascular diseases based on non-invasive imaging techniques[J]. Chin J Magn Reson Imaging, 2024, 15(12): 218-223. DOI:10.12015/issn.1674-8034.2024.12.034.


[Abstract] Epicardial adipose tissue (EAT) is a metabolically active endocrine organ that can be involved in mediating the onset and progression of cardiovascular disease through mechanisms such as inflammation, insulin resistance, and oxidative stress. Parameters such as EAT thickness and volume measured by noninvasive imaging techniques provide strong support for the early prevention, risk assessment, and therapeutic effect monitoring of cardiovascular disease. This article will systematically review the current state of research on the correlation between EAT by multimodal imaging techniques and the occurrence, progression, and prognosis of cardiovascular disease. The aim is to provide a reference for imaging assessment of EAT in clinical practice and to achieve early intervention for various cardiovascular disease.
[Keywords] epicardial adipose tissue;cardiovascular diseases;magnetic resonance imaging;computed tomography;echocardiography

SONG Jiamin1   LI Rui1   LEI Feng1   TANG Yangyang1   GUO Shunlin1, 2*  

1 The First Clinical Medical College of Lanzhou University, Lanzhou730030, China

2 Department of Radiology, the First Hospital of Lanzhou University, Lanzhou730030, China

Corresponding author: GUO S L, E-mail: guoshl@lzu.edu.cn

Conflicts of interest   None.

Received  2024-08-12
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.034
Cite this article as: SONG J M, LI R, LEI F, et al. Research progress on the correlation between epicardial adipose tissue and cardiovascular diseases based on non-invasive imaging techniques[J]. Chin J Magn Reson Imaging, 2024, 15(12): 218-223. DOI:10.12015/issn.1674-8034.2024.12.034.

[1]
TSAO C W, ADAY A W, ALMARZOOQ Z I, et al. Heart disease and stroke statistics-2023 update: a report from the American heart association[J/OL]. Circulation, 2023, 147(8): e93-e621 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36695182/. DOI: 10.1161/CIR.0000000000001123.
[2]
The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Overview of report on cardiovascular health and diseases in China 2022[J]. Chin J Cardiovasc Res, 2023, 21(7): 577-600. DOI: 10.3969/j.issn.1672-5301.2023.07.001.
[3]
ZOICO E, RUBELE S, DE CARO A, et al. Brown and beige adipose tissue and aging[J/OL]. Front Endocrinol, 2019, 10: 368 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/31281288/. DOI: 10.3389/fendo.2019.00368.
[4]
PABON M A, MANOCHA K, CHEUNG J W, et al. Linking arrhythmias and adipocytes: insights, mechanisms, and future directions[J/OL]. Front Physiol, 2018, 9: 1752 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/30568603/. DOI: 10.3389/fphys.2018.01752.
[5]
XU X X, ZHOU Q N, REN Z Y, et al. Evaluation of patients with angiographically-confirmed coronary artery disease to investigate the association between epicardial fat thickness and atrial fibrillation[J/OL]. Med Sci Monit, 2022, 28: e936446 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35614578/. DOI: 10.12659/MSM.936446.
[6]
IACOBELLIS G, BARONI M G. Cardiovascular risk reduction throughout GLP-1 receptor agonist and SGLT2 inhibitor modulation of epicardial fat[J]. J Endocrinol Invest, 2022, 45(3): 489-495. DOI: 10.1007/s40618-021-01687-1.
[7]
TEIXEIRA B L, CUNHA P S, JACINTO A S, et al. Epicardial adipose tissue volume assessed by cardiac CT as a predictor of atrial fibrillation recurrence following catheter ablation[J/OL]. Clin Imaging, 2024, 110: 110170 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38696998/. DOI: 10.1016/j.clinimag.2024.110170.
[8]
JEHN S, ROGGEL A, DYKUN I, et al. Epicardial adipose tissue and obstructive coronary artery disease in acute chest pain: the EPIC-ACS study[J/OL]. Eur Heart J Open, 2023, 3(3): oead041 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/37143611/. DOI: 10.1093/ehjopen/oead041.
[9]
WANG Z, LI J J, CHEN J W, et al. Relationship between epicardial adipose tissue volume and recurrence after ablation in premature ventricular complexes[J]. Circ J, 2024, 88(7): 1047-1054. DOI: 10.1253/circj.CJ-23-0474.
[10]
TAY J C K, YAP J. Epicardial adipose tissue: more than meets the eye[J/OL]. Int J Cardiol, 2022, 362: 174-175 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35533749/. DOI: 10.1016/j.ijcard.2022.05.001.
[11]
IACOBELLIS G, BIANCO A C. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features[J]. Trends Endocrinol Metab, 2011, 22(11): 450-457. DOI: 10.1016/j.tem.2011.07.003.
[12]
INCIARDI R M, CHANDRA A. Epicardial adipose tissue in heart failure: risk factor or mediator?[J]. Eur J Heart Fail, 2022, 24(8): 1357-1358. DOI: 10.1002/ejhf.2577.
[13]
CHONG B, JAYABASKARAN J, RUBAN J, et al. Epicardial adipose tissue assessed by computed tomography and echocardiography are associated with adverse cardiovascular outcomes: a systematic review and meta-analysis[J/OL]. Circ Cardiovasc Imaging, 2023, 16(5): e015159 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/37192298/. DOI: 10.1161/CIRCIMAGING.122.015159.
[14]
EROĞLU S. How do we measure epicardial adipose tissue thickness by transthoracic echocardiography?[J]. Anatol J Cardiol, 2015, 15(5): 416-419. DOI: 10.5152/akd.2015.5991.
[15]
REQUENA-IBÁÑEZ J A, SANTOS-GALLEGO C G, RODRIGUEZ CORDERO A J, et al. Not only how much, but also how to, when measuring epicardial adipose tissue[J/OL]. Magn Reson Imaging, 2022, 86: 149-151 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/34813891/. DOI: 10.1016/j.mri.2021.11.004.
[16]
ZHAO S H. Magnetic resonance imaging should serve as the gold standard for non-invasive assessment of cardiac structure and function: interpretation of the 2010 expert consensus document on cardiovascular magnetic resonance[J]. Chin Circul J, 2012, 27(z1): 90-92. DOI: 10.3969/j.issn.1000-3614.2012.z1.025.
[17]
LI Y F, SONG S N, SUN Y, et al. Segmentation and volume quantification of epicardial adipose tissue in computed tomography images[J]. Med Phys, 2022, 49(10): 6477-6490. DOI: 10.1002/mp.15965.
[18]
IACOBELLIS G. Local and systemic effects of the multifaceted epicardial adipose tissue depot[J]. Nat Rev Endocrinol, 2015, 11(6): 363-371. DOI: 10.1038/nrendo.2015.58.
[19]
SAHASRABUDDHE A V, PITALE S U, SIVANESAN S D, et al. Pathogenic gene expression of epicardial adipose tissue in patients with coronary artery disease[J]. Indian J Med Res, 2020, 151(6): 554-561. DOI: 10.4103/ijmr.IJMR_1374_18.
[20]
GRUZDEVA O V, DYLEVA Y A, BELIK E V, et al. Relationship between epicardial and coronary adipose tissue and the expression of adiponectin, leptin, and interleukin 6 in patients with coronary artery disease[J/OL]. J Pers Med, 2022, 12(2): 129 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35207618/. DOI: 10.3390/jpm12020129.
[21]
HIRATA Y, TABATA M, KUROBE H, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue[J]. J Am Coll Cardiol, 2011, 58(3): 248-255. DOI: 10.1016/j.jacc.2011.01.048.
[22]
NARYZHNAYA N V, KOSHELSKAYA O A, KOLOGRIVOVA I V, et al. Production of reactive oxygen species by epicardial adipocytes is associated with an increase in postprandial glycemia, postprandial insulin, and a decrease in serum adiponectin in patients with severe coronary atherosclerosis[J/OL]. Biomedicines, 2022, 10(8): 2054 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36009601/. DOI: 10.3390/biomedicines10082054.
[23]
WU Y, ZHANG A J, HAMILTON D J, et al. Epicardial fat in the maintenance of cardiovascular health[J]. Methodist Debakey Cardiovasc J, 2017, 13(1): 20-24. DOI: 10.14797/mdcj-13-1-20.
[24]
TEKAYA A B, MEHMLI T, MRAD I B, et al. Increased epicardial adipose tissue thickness correlates with endothelial dysfunction in spondyloarthritis[J]. Clin Rheumatol, 2022, 41(10): 3017-3025. DOI: 10.1007/s10067-022-06261-5.
[25]
WANG Q P, CHI J Y, WANG C, et al. Epicardial adipose tissue in patients with coronary artery disease: a meta-analysis[J/OL]. J Cardiovasc Dev Dis, 2022, 9(8): 253 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36005417/. DOI: 10.3390/jcdd9080253.
[26]
ISLAS F, GUTIÉRREZ E, CACHOFEIRO V, et al. Importance of cardiac imaging assessment of epicardial adipose tissue after a first episode of myocardial infarction[J/OL]. Front Cardiovasc Med, 2022, 9: 995367 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36451918/. DOI: 10.3389/fcvm.2022.995367.
[27]
GAVARA J, MERENCIANO-GONZALEZ H, LLOPIS-LORENTE J, et al. Impact of epicardial adipose tissue on infarct size and left ventricular systolic function in patients with anterior ST-segment elevation myocardial infarction[J/OL]. Diagnostics, 2024, 14(4): 368 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38396407/. DOI: 10.3390/diagnostics14040368.
[28]
GAO Z H, ZUO Y Q, JIA L Y, et al. Association between epicardial adipose tissue density and characteristics of coronary plaques assessed by coronary computed tomographic angiography[J]. Int J Cardiovasc Imaging, 2022, 38(3): 673-681. DOI: 10.1007/s10554-021-02428-4.
[29]
MA R L, VAN ASSEN M, TIES D, et al. Focal pericoronary adipose tissue attenuation is related to plaque presence, plaque type, and stenosis severity in coronary CTA[J]. Eur Radiol, 2021, 31(10): 7251-7261. DOI: 10.1007/s00330-021-07882-1.
[30]
ZHU J, XIE Z, HUANG H, et al. Association of epicardial adipose tissue with left ventricular strain and MR myocardial perfusion in patients with known coronary artery disease[J]. J Magn Reson Imaging, 2023, 58(5): 1490-1498. DOI: 10.1002/jmri.28619.
[31]
WEI Q, CHEN Y L, YUAN D Q, et al. Chest-CT-based radiomics feature of epicardial adipose tissue for screening coronary atherosclerosis[J/OL]. Heart Vessels, 2024 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/39540983/. DOI: 10.1007/s00380-024-02479-2.
[32]
NALLIAH C J, BELL J R, RAAIJMAKERS A J A, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality[J]. J Am Coll Cardiol, 2020, 76(10): 1197-1211. DOI: 10.1016/j.jacc.2020.07.017.
[33]
ABE I, TESHIMA Y, KONDO H, et al. Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation[J]. Heart Rhythm, 2018, 15(11): 1717-1727. DOI: 10.1016/j.hrthm.2018.06.025.
[34]
ZHANG M Q, LI Y, WANG Q S, et al. The correlation of epicardial adipose tissue thickness and atrial fibrillation by echocardiography[J]. Chin J Med Ultrasound Electron Ed, 2017, 14(3): 186-192. DOI: 10.3877/cma.j.issn.1672-6448.2017.03.006.
[35]
FAN Q K, ZHAN Y G, ZHENG M Q, et al. The predictive value of epicardial fat tissue volume in the occurrence and development of atrial fibrillation: a systematic review and meta-analysis[J/OL]. Cardiol Res Pract, 2022, 2022: 2090309 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36213458/. DOI: 10.1155/2022/2090309.
[36]
ILYUSHENKOVA J, SAZONOVA S, POPOV E, et al. Radiomic phenotype of epicardial adipose tissue in the prognosis of atrial fibrillation recurrence after catheter ablation in patients with lone atrial fibrillation[J]. J Arrhythm, 2022, 38(5): 682-693. DOI: 10.1002/joa3.12760.
[37]
BALLATORE A, GATTI M, MELLA S, et al. Epicardial atrial fat at cardiac magnetic resonance imaging and AF recurrence after transcatheter ablation[J/OL]. J Cardiovasc Dev Dis, 2024, 11(5): 137 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38786958/. DOI: 10.3390/jcdd11050137.
[38]
TOMOMORI S, SUENARI K, SAIRAKU A, et al. Prolonged PR intervals are associated with epicardial adipose tissue and recurrence after catheter ablation in persistent atrial fibrillation[J]. Heart Vessels, 2024, 39(3): 232-239. DOI: 10.1007/s00380-023-02323-z.
[39]
SANG C Y, HU X Q, ZHANG D D, et al. The predictive value of left atrium epicardial adipose tissue on recurrence after catheter ablation in patients with different types of atrial fibrillation[J/OL]. Int J Cardiol, 2023, 379: 33-39 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36893857/. DOI: 10.1016/j.ijcard.2023.03.011.
[40]
HUBER A T, FANKHAUSER S, CHOLLET L, et al. The relationship between enhancing left atrial adipose tissue at CT and recurrent atrial fibrillation[J]. Radiology, 2022, 305(1): 56-65. DOI: 10.1148/radiol.212644.
[41]
YANG M, CAO Q Q, XU Z H, et al. Development and validation of a machine learning-based radiomics model on cardiac computed tomography of epicardial adipose tissue in predicting characteristics and recurrence of atrial fibrillation[J/OL]. Front Cardiovasc Med, 2022, 9: 813085 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35310976/. DOI: 10.3389/fcvm.2022.813085.
[42]
CHANG S H, CHU P H, TSAI C T, et al. Both epicardial and peri-aortic adipose tissue blunt heart rate recovery beyond body fat mass[J/OL]. Front Cardiovasc Med, 2022, 9: 939515 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36211580/. DOI: 10.3389/fcvm.2022.939515.
[43]
WANG Z, CHEN J W, GUO H H, et al. The relationship between epicardial adipose tissue volume on coronary computed tomography angiography and idiopathic ventricular tachycardia: a propensity score matching case-control study in Chinese population[J]. Cardiovasc Diagn Ther, 2024, 14(1): 29-37. DOI: 10.21037/cdt-23-345.
[44]
SEPEHRI SHAMLOO A, SCHOENE K, STAUBER A, et al. Epicardial adipose tissue thickness as an independent predictor of ventricular tachycardia recurrence following ablation[J]. Heart Rhythm, 2019, 16(10): 1492-1498. DOI: 10.1016/j.hrthm.2019.06.009.
[45]
WANG Z, JIAO S Q, CHEN J W, et al. The relationship between frequent premature ventricular complexes and epicardial adipose tissue volume[J/OL]. Front Endocrinol, 2023, 14: 1219890 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/37822598/. DOI: 10.3389/fendo.2023.1219890.
[46]
GÜNEŞ H, GÜNEŞ H, TEMIZ F. The relationship between epicardial adipose tissue and insulin resistance in obese children[J]. Arq Bras Cardiol, 2020, 114(4): 675-682. DOI: 10.36660/abc.20190197.
[47]
ZHU J, LI W J, XIE Z, et al. Relationship between epicardial adipose tissue and biventricular longitudinal strain and strain rate in patients with type 2 diabetes mellitus[J]. Acad Radiol, 2023, 30(5): 833-840. DOI: 10.1016/j.acra.2022.08.019.
[48]
HUANG S, LI Y, JIANG L, et al. Impact of type 2 diabetes mellitus on epicardial adipose tissue and myocardial microcirculation by MRI in postmenopausal women[J]. J Magn Reson Imaging, 2022, 56(5): 1404-1413. DOI: 10.1002/jmri.28121.
[49]
ZHAO N, WANG X Y, WANG Y B, et al. The effect of liraglutide on epicardial adipose tissue in type 2 diabetes[J/OL]. J Diabetes Res, 2021, 2021: 5578216 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/34825006/. DOI: 10.1155/2021/5578216.
[50]
CINTI F, LECCISOTTI L, SORICE G P, et al. Dapagliflozin treatment is associated with a reduction of epicardial adipose tissue thickness and epicardial glucose uptake in human type 2 diabetes[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 349 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38115004/. DOI: 10.1186/s12933-023-02091-0.
[51]
GÜNEY A Y, ŞAP F, EKLIOĞLU B S, et al. Investigation of the effect of epicardial adipose tissue thickness on cardiac conduction system in children with type 1 diabetes mellitus[J]. J Pediatr Endocrinol Metab, 2020, 33(6): 713-720. DOI: 10.1515/jpem-2020-0001.
[52]
TRABZON G, GÜNGÖR Ş, GÜLLÜ Ş D, et al. Evaluation of epicardial adipose tissue in children with type 1 diabetes[J/OL]. Pediatr Res, 2024 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38879626/. DOI: 10.1038/s41390-024-03319-9.
[53]
HSU J C, HUANG K C, LIN T T, et al. Epicardial adipose tissue is associated with geometry alteration and diastolic dysfunction in prediabetic cardiomyopathy[J/OL]. J Clin Endocrinol Metab, 2024: dgae400 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38864548/. DOI: 10.1210/clinem/dgae400.
[54]
XIANG X Y, PAN J. Relationship between epicardial fat thickness and cardiac function grading in diabetic patients with chronic heart failure[J]. Chin Foreign Med Res, 2024, 22(3): 81-83. DOI: 10.14033/j.cnki.cfmr.2024.03.021.
[55]
INCIARDI R M, LUPI L, ZACCONE G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19)[J]. JAMA Cardiol, 2020, 5(7): 819-824. DOI: 10.1001/jamacardio.2020.1096.
[56]
LALA A, JOHNSON K W, RUSSAK A J, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection[J/OL]. medRxiv, 2020: 2020.04.20.20072702 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/32511658/. DOI: 10.1101/2020.04.20.20072702.
[57]
WU L H, JIANG Z, MEULENDIJKS E R, et al. Atrial inflammation and microvascular thrombogenicity are increased in deceased COVID-19 patients[J/OL]. Cardiovasc Pathol, 2023, 64: 107524 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/36649811/. DOI: 10.1016/j.carpath.2023.107524.
[58]
PATEL V B, OUDIT G Y. Response to comment on patelet Al. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. diabetes 2016;65: 85-95[J/OL]. Diabetes, 2016, 65(2): e3-e4 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/26798128/. DOI: 10.2337/dbi15-0037.
[59]
ABRISHAMI A, ESLAMI V, BAHARVAND Z, et al. Epicardial adipose tissue, inflammatory biomarkers and COVID-19: is there a possible relationship?[J/OL]. Int Immunopharmacol, 2021, 90: 107174 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/33208293/. DOI: 10.1016/j.intimp.2020.107174.
[60]
DENG M, QI Y J, DENG L P, et al. Obesity as a potential predictor of disease severity in young COVID-19 patients: a retrospective study[J]. Obesity, 2020, 28(10): 1815-1825. DOI: 10.1002/oby.22943.
[61]
SU T H, ZHONG B C, TANG C, et al. Correlation between epicardial adipose tissue and myocardial injury in patients with COVID-19[J/OL]. Front Physiol, 2024, 15: 1368542 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/38706946/. DOI: 10.3389/fphys.2024.1368542.
[62]
BIHAN H, HEIDAR R, BELOEUVRE A, et al. Epicardial adipose tissue and severe Coronavirus Disease 19[J/OL]. Cardiovasc Diabetol, 2021, 20(1): 147 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/34284784/. DOI: 10.1186/s12933-021-01329-z.
[63]
ROSSI A P, DONADELLO K, SCHWEIGER V, et al. Epicardial adipose tissue volume and CT-attenuation as prognostic factors for pulmonary embolism and mortality in critically ill patients affected by COVID-19[J]. Eur J Clin Nutr, 2023, 77(1): 105-111. DOI: 10.1038/s41430-022-01197-0.

PREV Research progress of multimodal imaging techniques in high myopia
NEXT Research progress of radiomics inpredicting microvascular invasion of intrahepatic cholangicarcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn