Share:
Share this content in WeChat
X
Review
Research progress of radiomics inpredicting microvascular invasion of intrahepatic cholangicarcinoma
MA Jiamei  SUN Liu  LI Xiaomeng  YIN Xiaoping 

Cite this article as: MA J M, SUN L, LI X M, et al. Research progress of radiomics inpredicting microvascular invasion of intrahepatic cholangicarcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(12): 224-227, 234. DOI:10.12015/issn.1674-8034.2024.12.035.


[Abstract] Intrahepatic cholangiocarcinoma (ICC) is the second common malignant tumor originating in the liver, and its incidence is rising worldwide. Microvascular invasion (MVI) is a considerable poor-prognostic factor in ICC. Radiomics transforms image information into intuitive data to reflect tumor internal heterogeneity by extracting quantitative features from medical images with high throughput, which important value in predicting ICC MVI before surgery has been proven. However, the optimal radiological method, radiomics features, independent predictors, and other key issues related to the prediction model of ICC MVI remain unclear, and research on peritumoral radiomics is also lacking. This review will stress these issues by providing a comprehensive review on ICC MVI prediction before surgery from the four sections of computed tomography (CT), MRI, positron emission tomography (PET) and ultrasound (US). The aim of this paper is to promote the accurate diagnosis and treatment of ICC MVI for clinicians.
[Keywords] intrahepatic cholangiocarcinoma;microvascular invasion;radiomics;computed tomography;magnetic resonance imaging;positron emission tomography;ultrasound

MA Jiamei1, 2   SUN Liu1, 2   LI Xiaomeng1, 2   YIN Xiaoping1, 2*  

1 Department of Radiology, Affiliated Hospital of Hebei University, Baoding071000, China

2 Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Baoding071000, China

Corresponding author: YIN X P, E-mail: yinxiaoping78@sina.com

Conflicts of interest   None.

Received  2024-06-19
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.035
Cite this article as: MA J M, SUN L, LI X M, et al. Research progress of radiomics inpredicting microvascular invasion of intrahepatic cholangicarcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(12): 224-227, 234. DOI:10.12015/issn.1674-8034.2024.12.035.

[1]
Department of Medical Administration of the National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer (2024 edition)[J]. Chin J Magn Reson Imag, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
MOEINI A, HABER P K, SIA D. Cell of origin in biliary tract cancers and clinical implications[J/OL]. JHEP Rep, 2021, 3(2): 100226 [2024-03-02]. https://www.jhep-reports.eu/article/S2589-5559(21)00002-1/fulltext. DOI: 10.1016/j.jhepr.2021.100226.
[4]
Expert Committee of Expert Consensus on Pathological Diagnosis of Intrahepatic Cholangiocarcinoma. Expert consensus on pathological diagnosis of intrahepatic cholangiocarcinoma (2022 version)[J]. Chin J Pathol, 2022, 51(9): 819-827. DOI: 10.3760/cma.j.cn112151-20220517-00423.
[5]
CERRITO L, AINORA M E, BORRIELLO R, et al. Contrast-enhanced imaging in the management of intrahepatic cholangiocarcinoma: state of art and future perspectives[J/OL]. Cancers, 2023, 15(13): 3393 [2024-03-02]. https://www.mdpi.com/2072-6694/15/13/3393. DOI: 10.3390/cancers15133393.
[6]
EUROPEAN ASSOCIATION FOR THE STUDY OF THE LIVER. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma[J]. J Hepatol, 2023, 79(1): 181-208. DOI: 10.1016/j.jhep.2023.03.010.
[7]
MAZZAFERRO V, GORGEN A, ROAYAIE S, et al. Liver resection and transplantation for intrahepatic cholangiocarcinoma[J]. J Hepatol, 2020, 72(2): 364-377. DOI: 10.1016/j.jhep.2019.11.020.
[8]
MORIS D, PALTA M, KIM C, et al. Advances in the treatment of intrahepatic cholangiocarcinoma: an overview of the current andfuturetherapeutic landscape for clinicians[J]. CA Cancer J Clin, 2023, 73(2): 198-222. DOI: 10.3322/caac.21759.
[9]
O'ROURKE C J, SALATI M, RAE C, et al. Molecular portraits of patients with intrahepatic cholangiocarcinoma who diverge as rapid progressors or long survivors on chemotherapy[J]. Gut, 2024, 73(3): 496-508. DOI: 10.1136/gutjnl-2023-330748.
[10]
BRAGAZZI M C, VENERE R, RIBICHINI E, et al. Intrahepatic cholangiocarcinoma: evolving strategies in management and treatment[J]. Dig Liver Dis, 2024, 56(3): 383-393. DOI: 10.1016/j.dld.2023.08.052.
[11]
CHEN Y F, LIU H Z, ZHANG J Y, et al. Prognostic value and predication model of microvascular invasion in patients with intrahepatic cholangiocarcinoma: a multicenter study from China[J/OL]. BMC Cancer, 2021, 21(1): 1299[2024-06-30]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8645153/. DOI: 10.1186/s12885-021-09035-5.
[12]
MAKI H, KAWAGUCHI Y, NAGATA R, et al. Conditional recurrence analysis of intrahepatic cholangiocarcinoma: changes in recurrence rate and survival after recurrence resection by disease-free interval[J]. Hepatol Res, 2023, 53(12): 1224-1234. DOI: 10.1111/hepr.13951.
[13]
SUN Z Q, HAN X, YOU W L, et al. Adjuvant therapy for cholangiocarcinoma after surgery and prognosis factors for cholangiocarcinoma: a single-center retrospective cohort study[J/OL]. Front Oncol, 2023, 13: 1116338 [2024-06-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10063974/. DOI: 10.3389/fonc.2023.1116338.
[14]
XU Y, LI Z, ZHOU Y Z, et al. Using immunovascular characteristics to predict very early recurrence and prognosis of resectable intrahepatic cholangiocarcinoma[J/OL]. BMC Cancer, 2023, 23(1): 1009 [2024-06-30]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10588260/. DOI: 10.1186/s12885-023-11476-z.
[15]
RODRÍGUEZ-PERÁLVAREZ M, LUONG T V, ANDREANA L, et al. A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability[J]. Ann Surg Oncol, 2013, 20(1): 325-339. DOI: 10.1245/s10434-012-2513-1.
[16]
Chinese Association of Liver Cancer of Chinese Medical Doctor Association. Chinese expert consensus on the diagnosis and treatment of hepatocellular carcinoma with microvascular invasion (2024 edition)[J]. Chin J Dig Surg, 2024, 23(2): 153-164. DOI: 10.3760/cma.j.cn115610-20240125-00041.
[17]
WANG H, CHEN J J, YIN S Y, et al. A grading system of microvascular invasion for patients with hepatocellular carcinoma undergoing liver resection with curative intent: a multicenter study[J]. J Hepatocell Carcinoma, 2024, 11: 191-206. DOI: 10.2147/jhc.s447731.
[18]
ZHANG Z H, JIANG C, QIANG Z Y, et al. Role of microvascular invasion in early recurrence of hepatocellular carcinoma after liver resection: a literature review[J]. Asian J Surg, 2024, 47(5): 2138-2143. DOI: 10.1016/j.asjsur.2024.02.115.
[19]
YU L, DAI M G, LU W F, et al. Preoperative prediction model for microvascular invasion in HBV-related intrahepatic cholangiocarcinoma[J/OL]. BMC Surg, 2023, 23(1): 239 [2024-10-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10433593/. DOI: 10.1186/s12893-023-02139-8.
[20]
FENG B, WANG L Y, ZHU Y J, et al. The value of LI-RADS and radiomic features from MRI for predicting microvascular invasion in hepatocellular carcinoma within 5cm[J]. Acad Radiol, 2024, 31(6): 2381-2390. DOI: 10.1016/j.acra.2023.12.007.
[21]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[22]
LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309.
[23]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[24]
BODARD S, LIU Y, GUINEBERT S, et al. Performance of radiomics in microvascular invasion risk stratification and prognostic assessment in hepatocellular carcinoma: a meta-analysis[J/OL]. Cancers, 2023, 15(3): 743 [2024-03-15]. https://pubmed.ncbi.nlm.nih.gov/36765701/. DOI: 10.3390/cancers15030743.
[25]
LYU H Y, HONG Z, HUANG X M, et al. Prediction of microvascular invasion of mass-forming intrahepatic cholangiocarcinoma basedon contrast-enhanced CT radiomics and machine learning[J].Journal of Hepatopancreatobiliary Surgery, 2024, 36(1): 13-19. DOI: 10.11952/j.issn.1007-1954.2024.01.003.
[26]
XIANG F, WEI S M, LIU X Y, et al. Radiomics analysis of contrast-enhanced CT for the preoperative prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma[J/OL]. Front Oncol, 2021, 11: 774117 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34869018/. DOI: 10.3389/fonc.2021.774117.
[27]
LIAO Z J, LU L, LIU Y P, et al. Clinical and DCE-CT signs in predicting microvascular invasion in cHCC-ICC[J/OL]. Cancer Imaging, 2023, 23(1): 112 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/37978567/. DOI: 10.1186/s40644-023-00621-3.
[28]
ZHOU Y, ZHOU G F, ZHANG J L, et al. Radiomics signature on dynamic contrast-enhanced MR images: a potential imaging biomarker for prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma[J]. Eur Radiol, 2021, 31(9): 6846-6855. DOI: 10.1007/s00330-021-07793-1.
[29]
TANG Z, LIU W R, ZHOU P Y, et al. Prognostic value and predication model of microvascular invasion in patients with intrahepatic cholangiocarcinoma[J]. J Cancer, 2019, 10(22): 5575-5584. DOI: 10.7150/jca.32199.
[30]
MA X J, QIAN X L, WANG Q, et al. Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma[J]. Radiol Med, 2023, 128(11): 1296-1309. DOI: 10.1007/s11547-023-01704-8.
[31]
ZHANG Y F, CHEN J J, YANG C, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using diffusion-weighted imaging-based habitat imaging[J]. Eur Radiol, 2024, 34(5): 3215-3225. DOI: 10.1007/s00330-023-10339-2.
[32]
LIU Z W, LUO C, CHEN X J, et al. Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study[J]. Int J Surg, 2024, 110(2): 1039-1051. DOI: 10.1097/JS9.0000000000000881.
[33]
CHEN M M, TERZIC A, BECKER A S, et al. Artificial intelligence in oncologic imaging[J/OL]. Eur J Radiol Open, 2022, 9: 100441 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/36193451/. DOI: 10.1016/j.ejro.2022.100441.
[34]
LIU Y L, WANG B, MO X, et al. A deep learning workflow for mass-forming intrahepatic cholangiocarcinoma and hepatocellular carcinoma classification based on MRI[J]. Curr Oncol, 2022, 30(1): 529-544. DOI: 10.3390/curroncol30010042.
[35]
CHEN S, ZHU Y M, WAN L J, et al. Predicting the microvascular invasion and tumor grading of intrahepatic mass-forming cholangiocarcinoma based on magnetic resonance imaging radiomics and morphological features[J]. Quant Imaging Med Surg, 2023, 13(12): 8079-8093. DOI: .
[36]
XU Q, ZHU Q Q, LIU H, et al. Differentiating benign from malignant renal tumors using T2- and diffusion-weighted images: a comparison of deep learning and radiomics models versus assessment from radiologists[J]. J Magn Reson Imaging, 2022, 55(4): 1251-1259. DOI: .
[37]
QIAN X L, LU X, MA X J, et al. A multi-parametric radiomics nomogram for preoperative prediction of microvascular invasion status in intrahepatic cholangiocarcinoma[J/OL]. Front Oncol, 2022, 12: 838701 [2024-03-20]. https://pubmed.ncbi.nlm.nih.gov/35280821/. DOI: 10.3389/fonc.2022.838701.
[38]
SILVA M, VIVANCOS C, DUFFAU H. The concept of «Peritumoral zone» in diffuse low-grade gliomas: oncological and functional implications for a connectome-guided therapeutic attitude[J/OL]. Brain Sci, 2022, 12(4): 504 [2024-03-21]. https://pubmed.ncbi.nlm.nih.gov/35448035/. DOI: 10.3390/brainsci12040504.
[39]
HOU J, LIU W Y. Advance of peritumoral radiomics research[J]. Chin J Magn Reson Imag, 2024, 15(3): 230-234. DOI: 10.12015/issn.1674-8034.2024.03.038.
[40]
MA X J, LIU L H, FANG J, et al. MRI features predict microvascular invasion in intrahepatic cholangiocarcinoma[J]. Cancer Imaging, 2020, 20(1): 40 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/32576283/. DOI: 10.1186/s40644-020-00318-x.
[41]
ZHOU Y, WANG X L, XU C, et al. Mass-forming intrahepatic cholangiocarcinoma: can diffusion-weighted imaging predict microvascular invasion?[J]. J Magn Reson Imaging, 2019, 50(1): 315-324. DOI: 10.1002/jmri.26566.
[42]
CHEN S, WAN L J, ZHAO R, et al. Predictive factors of microvascular invasion in patients with intrahepatic mass-forming cholangiocarcinoma based on magnetic resonance images[J]. Abdom Radiol, 2023, 48(4): 1306-1319. DOI: 10.1007/s00261-023-03847-8.
[43]
ZHAN P C, YANG T, ZHANG Y, et al. Radiomics using CT images for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma: a multi-centric study[J]. Eur Radiol, 2024, 34(2): 1280-1291. DOI: 10.1007/s00330-023-10108-1.
[44]
CHEN S, WAN L J, ZHAO R, et al. Nomogram based on preoperative clinical and MRI features to estimate the microvascular invasion status and the prognosis of solitary intrahepatic mass-forming cholangiocarcinoma[J]. Abdom Radiol, 2024, 49(2): 425-436. DOI: 10.1007/s00261-023-04079-6.
[45]
GAO W Y, WANG W T, SONG D J, et al. A multiparametric fusion deep learning model based on DCE-MRI for preoperative prediction of microvascular invasion in intrahepatic cholangiocarcinoma[J]. J Magn Reson Imaging, 2022, 56(4): 1029-1039. DOI: 10.1002/jmri.28126.
[46]
WEI Y P, ZHANG S, SONG M N, et al. MRI enhanced features, pathology and prognosis of intrahepatic mass-forming cholangiocarcinoma[J]. Chin J Magn Reson Imag, 2023, 14(8): 68-72. DOI: 10.12015/issn.1674-8034.2023.08.011.
[47]
VAZ S C, ADAM J A, DELGADO BOLTON R C, et al. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0[J]. Eur J Nucl Med Mol Imaging, 2022, 49(4): 1386-1406. DOI: 10.1007/s00259-021-05624-5.
[48]
FIZ F, MASCI C, COSTA G, et al. PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival[J]. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3387-3400. DOI: 10.1007/s00259-022-05765-1.
[49]
JIANG C J, ZHAO L W, XIN B W, et al. 18F-FDG PET/CT radiomic analysis for classifying and predicting microvascular invasion in hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Quant Imaging Med Surg, 2022, 12(8): 4135-4150. DOI: 10.21037/qims-21-1167.
[50]
JIANG C, YUAN Y, GU B, et al. Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis[J]. Clin Radiol, 2023, 78(9): 687-696. DOI: 10.1016/j.crad.2023.05.007.
[51]
KANEKO K, NAGAO M, YAMAMOTO A, et al. Patlak reconstruction using dynamic 18 F-FDG PET imaging for evaluation of malignant liver tumors: A comparison of HCC, ICC, and metastatic liver tumors[J]. Clin Nucl Med, 2024, 49(2): 116-123. DOI: 10.1097/RLU.0000000000005013.
[52]
LIANG J C, JIANG S Q, SONG J J, et al. Role of [18F] FAPI-04 in staging and therapeutic management of intrahepatic cholangiocarcinoma: prospective comparison with [18F]FDG PET/CT[J/OL]. EJNMMI Res, 2024, 14(1): 81 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/39256297/. DOI: 10.1186/s13550-024-01145-y.
[53]
CHEN J N, ZHANG W B, BAO J W, et al. Implications of ultrasound-based deep learning model for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Abdom Radiol, 2024, 49(1): 93-102. DOI: 10.1007/s00261-023-04089-4.
[54]
HU H T, WANG Z, HUANG X W, et al. Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma[J]. Eur Radiol, 2019, 29(6): 2890-2901. DOI: 10.1007/s00330-018-5797-0.

PREV Research progress on the correlation between epicardial adipose tissue and cardiovascular diseases based on non-invasive imaging techniques
NEXT Quantitative MRI techniques for brown adipose tissue: Current status and advances
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn