Share:
Share this content in WeChat
X
Review
Quantitative MRI techniques for brown adipose tissue: Current status and advances
LIU Siheng  ZHANG Ying  AISHA Abuduwaili  LÜ Yanchun 

Cite this article as: LIU S H, ZHANG Y, AISHA A, et al. Quantitative MRI techniques for brown adipose tissue: Current status and advances[J]. Chin J Magn Reson Imaging, 2024, 15(12): 228-234. DOI:10.12015/issn.1674-8034.2024.12.036.


[Abstract] The global increase in obesity and its associated complications, such as type 2 diabetes, cardiovascular diseases, and metabolic syndrome, has become a major public health concern. The fundamental cause of obesity is a prolonged imbalance between energy intake and expenditure, with adipose tissue, particularly brown adipose tissue (BAT), playing a key role in energy metabolism. Unlike white adipose tissue, which primarily stores energy, BAT dissipates energy through thermogenesis, making it a potential target for obesity prevention and treatment. This review provides an overview of current magnetic resonance imaging (MRI) techniques for the quantitative assessment of BAT, including water-fat separation imaging, chemical exchange saturation transfer (CEST), and magnetic resonance spectroscopy (MRS). The applications and limitations of these techniques in quantifying BAT volume, lipid content, and metabolic activity are discussed. This review aims to analyze and evaluate current research findings, assess the potential and limitations of various techniques, identify future research directions, and promote the application of BAT-related magnetic resonance imaging technologies in the diagnosis and treatment of obesity and metabolic diseases, ultimately contributing to the standardization and clinical translation in this field.
[Keywords] brown adipose tissue;magnetic resonance imaging;chemical exchange saturation transfer imaging;water-fat separation imaging

LIU Siheng   ZHANG Ying   AISHA Abuduwaili   LÜ Yanchun*  

Department of Imaging, Sun Yat-sen University Cancer Center, Guangzhou510060, China

Corresponding author: LÜ Y C, E-mail: lvych@sysucc.org.cn

Conflicts of interest   None.

Received  2024-09-20
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2024.12.036
Cite this article as: LIU S H, ZHANG Y, AISHA A, et al. Quantitative MRI techniques for brown adipose tissue: Current status and advances[J]. Chin J Magn Reson Imaging, 2024, 15(12): 228-234. DOI:10.12015/issn.1674-8034.2024.12.036.

[1]
NCD RISK FACTOR COLLABORATION (NCD-RISC). Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults[J]. Lancet, 2024, 403(10431): 1027-1050. DOI: 10.1016/S0140-6736(23)02750-2.
[2]
ZHANG X Y, LIU J Y, NI Y Y, et al. Global prevalence of overweight and obesity in children and adolescents: a systematic review and meta-analysis[J]. JAMA Pediatr, 2024, 178(8): 800-813. DOI: 10.1001/jamapediatrics.2024.1576.
[3]
SCHEELE C, WOLFRUM C. Brown adipose crosstalk in tissue plasticity and human metabolism[J]. Endocr Rev, 2020, 41(1): 53-65. DOI: 10.1210/endrev/bnz007.
[4]
CHEN K Y, CYPESS A M, LAUGHLIN M R, et al. Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans[J]. Cell Metab, 2016, 24(2): 210-222. DOI: 10.1016/j.cmet.2016.07.014.
[5]
CYPESS A M, LEHMAN S, WILLIAMS G, et al. Identification and importance of brown adipose tissue in adult humans[J]. N Engl J Med, 2009, 360(15): 1509-1517. DOI: 10.1056/NEJMoa0810780.
[6]
VAN MARKEN LICHTENBELT W D, VANHOMMERIG J W, SMULDERS N M, et al. Cold-activated brown adipose tissue in healthy men[J]. N Engl J Med, 2009, 360(15): 1500-1508. DOI: 10.1056/NEJMoa0808718.
[7]
CAI Z M, ZHONG Q L, FENG Y Q, et al. Non-invasive mapping of brown adipose tissue activity with magnetic resonance imaging[J/OL]. Nat Metab, 2024, 6: 1367-1379 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/39054361/. DOI: 10.1038/s42255-024-01082-z.
[8]
RICHARD G, NOLL C, ARCHAMBAULT M, et al. Contribution of perfusion to the 11 C-acetate signal in brown adipose tissue assessed by DCE-MRI and 68 Ga-DOTA PET in a rat model[J]. Magn Reson Med, 2021, 85(3): 1625-1642. DOI: 10.1002/mrm.28535.
[9]
CAI Z, YI P, TAO Q, et al. Comparison of 1H-MRS, Dixon fat-water separation and Z-spectral imaging for quantification of brown adipose tissue in rats[J]. J South Med Univ, 2021, 41(5): 783-788. DOI: 10.12122/j.issn.1673-4254.2021.05.21.
[10]
CARPENTIER A C. Tracers and imaging of fatty acid and energy metabolism of human adipose tissues[J/OL]. Physiology, 2024, 39(2) [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/38113392/. DOI: 10.1152/physiol.00012.2023.
[11]
KWOK T C, STIMSON R H. Human brown adipose tissue function: insights from current in vivo techniques[J/OL]. J Endocrinol, 2023, 259(1): e230017 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/37594011/. DOI: 10.1530/JOE-23-0017.
[12]
GU J J, WANG X L, YANG H, et al. Preclinical in vivo imaging for brown adipose tissue[J/OL]. Life Sci, 2020, 249: 117500 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/32147430/. DOI: 10.1016/j.lfs.2020.117500.
[13]
VIRTANEN K A, LIDELL M E, ORAVA J, et al. Functional brown adipose tissue in healthy adults[J]. N Engl J Med, 2009, 360(15): 1518-1525. DOI: 10.1056/NEJMoa0808949.
[14]
CHOUCHANI E T, KAZAK L, SPIEGELMAN B M. New advances in adaptive thermogenesis: UCP1 and beyond[J]. Cell Metab, 2019, 29(1): 27-37. DOI: 10.1016/j.cmet.2018.11.002.
[15]
TAPIA P, FERNÁNDEZ-GALILEA M, ROBLEDO F, et al. Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications[J]. Biol Rev Camb Philos Soc, 2018, 93(2): 1145-1164. DOI: 10.1111/brv.12389.
[16]
WU J, BOSTRÖM P, SPARKS L M, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human[J]. Cell, 2012, 150(2): 366-376. DOI: 10.1016/j.cell.2012.05.016.
[17]
FUETTERER M, STOECK C T, KOZERKE S. Second-order motion compensated PRESS for cardiac spectroscopy[J]. Magn Reson Med, 2017, 77(1): 57-64. DOI: 10.1002/mrm.26099.
[18]
SAUCEDO A, SAYRE J, THOMAS M A. Single-shot diffusion trace-weighted MR spectroscopy: comparison with unipolar and bipolar diffusion-weighted point-resolved spectroscopy[J/OL]. NMR Biomed, 2024, 37(4): e5090 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/38148181/. DOI: 10.1002/nbm.5090.
[19]
IBRAHIM E L S H, WEISS R G, STUBER M, et al. Stimulated-echo acquisition mode (STEAM) MRI for black-blood delayed hyperenhanced myocardial imaging[J]. J Magn Reson Imaging, 2008, 27(1): 229-238. DOI: 10.1002/jmri.21220.
[20]
OUWERKERK R, HAMIMI A, MATTA J, et al. Proton MR spectroscopy measurements of white and brown adipose tissue in healthy humans: relaxation parameters and unsaturated fatty acids[J]. Radiology, 2021, 299(2): 396-406. DOI: 10.1148/radiol.2021202676.
[21]
BARKER P B. Imaging brown adipose tissue using magnetic resonance: a promising future?[J]. Radiology, 2021, 299(2): 407-408. DOI: 10.1148/radiol.2021210185.
[22]
BRANCA R T, WARREN W S. In vivo brown adipose tissue detection and characterization using water-lipid intermolecular zero-quantum coherences[J]. Magn Reson Med, 2011, 65(2): 313-319. DOI: 10.1002/mrm.22622.
[23]
BAO J F, CUI X H, CAI S H, et al. Brown adipose tissue mapping in rats with combined intermolecular double-quantum coherence and Dixon water-fat MRI[J]. NMR Biomed, 2013, 26(12): 1663-1671. DOI: 10.1002/nbm.3000.
[24]
BRANCA R T, ZHANG L, WARREN W S, et al. In vivo noninvasive detection of Brown Adipose Tissue through intermolecular zero-quantum MRI[J/OL]. PLoS One, 2013, 8(9): e74206 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/24040203/. DOI: 10.1371/journal.pone.0074206.
[25]
LIN L J, ZHANG Q H, WANG N, et al. Evaluation of brown adipose tissue with intermolecular double-quantum coherence magnetic resonance spectroscopy at 3.0T[J/OL]. NMR Biomed, 2022, 35(6): e4676 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/35043481/. DOI: 10.1002/nbm.4676.
[26]
WU M M, JUNKER D, BRANCA R T, et al. Magnetic resonance imaging techniques for brown adipose tissue detection[J/OL]. Front Endocrinol, 2020, 11: 421 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/32849257/. DOI: 10.3389/fendo.2020.00421.
[27]
CHEN Y C, CYPESS A M, CHEN Y C, et al. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging[J]. J Nucl Med, 2013, 54(9): 1584-1587. DOI: 10.2967/jnumed.112.117275.
[28]
FRANZ D, KARAMPINOS D C, RUMMENY E J, et al. Discrimination between brown and white adipose tissue using a 2-point Dixon water-fat separation method in simultaneous PET/MRI[J]. J Nucl Med, 2015, 56(11): 1742-1747. DOI: 10.2967/jnumed.115.160770.
[29]
STAHL V, MAIER F, FREITAG M T, et al. In vivo assessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI[J]. J Magn Reson Imaging, 2017, 45(2): 369-380. DOI: 10.1002/jmri.25364.
[30]
HOLSTILA M, PESOLA M, SAARI T, et al. MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure[J/OL]. Metabolism, 2017, 70: 23-30 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/28403942/. DOI: 10.1016/j.metabol.2017.02.001.
[31]
HU H H, YIN L, AGGABAO P C, et al. Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water-fat MRI[J]. J Magn Reson Imaging, 2013, 38(4): 885-896. DOI: 10.1002/jmri.24053.
[32]
HU H H, HINES C D G, SMITH D L, et al. Variations in T(2)* and fat content of murine brown and white adipose tissues by chemical-shift MRI[J]. Magn Reson Imaging, 2012, 30(3): 323-329. DOI: 10.1016/j.mri.2011.12.004.
[33]
HU H H, SMITH D L, NAYAK K S, et al. Identification of brown adipose tissue in mice with fat-water IDEAL-MRI[J]. J Magn Reson Imaging, 2010, 31(5): 1195-1202. DOI: 10.1002/jmri.22162.
[34]
ABREU-VIEIRA G, SARDJOE MISHRE A S D, BURAKIEWICZ J, et al. Human brown adipose tissue estimated with magnetic resonance imaging undergoes changes in composition after cold exposure: an in vivo MRI study in healthy volunteers[J/OL]. Front Endocrinol, 2019, 10: 898 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/31998233/. DOI: 10.3389/fendo.2019.00898.
[35]
SARDJOE MISHRE A S D, MARTINEZ-TELLEZ B, STRAAT M E, et al. Image registration and mutual thresholding enable low interimage variability across dynamic MRI measurements of supraclavicular brown adipose tissue during mild cold exposure[J]. Magn Reson Med, 2023, 90(4): 1316-1327. DOI: 10.1002/mrm.29707.
[36]
FISCHER J G W, MAUSHART C I, BECKER A S, et al. Comparison of[18F]FDG PET/CT with magnetic resonance imaging for the assessment of human brown adipose tissue activity[J/OL]. EJNMMI Res, 2020, 10(1): 85 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/32699996/. DOI: 10.1186/s13550-020-00665-7.
[37]
CAI Z M. Study on fat quantitative imaging based on Z spectrum on ultra-high field magnetic resonance imaging[D].Guangzhou: Southern Medical University, 2021.
[38]
SCOTTI A, TAIN R W, LI W G, et al. Mapping brown adipose tissue based on fat water fraction provided by Z-spectral imaging[J]. J Magn Reson Imaging, 2018, 47(6): 1527-1533. DOI: 10.1002/jmri.25890.
[39]
LI L, SCOTTI A, FANG J C, et al. Characterization of brown adipose tissue (BAT) in polycystic ovary syndrome (PCOS) patients by Z-Spectral Imaging (ZSI)[J/OL]. Eur J Radiol, 2020, 123: 108777 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/31855655/. DOI: 10.1016/j.ejrad.2019.108777.
[40]
ZHU C L, GUO Y H, ZHONG Q L, et al. The value on the evaluation of metabolic activity of brown adipose tissue in interscapular region of rats using quantitative susceptibility mapping[J]. Guangdong Med J, 2021, 42(5): 519-523. DOI: 10.13820/j.cnki.gdyx.20201131.
[41]
GHASSABAN K, LIU S F, JIANG C H, et al. Quantifying iron content in magnetic resonance imaging[J/OL]. NeuroImage, 2019, 187: 77-92 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/29702183/. DOI: 10.1016/j.neuroimage.2018.04.047.
[42]
ZHU C L, GUO Y H, SI W B, et al. Detection of brown adipose tissue in rats with acute cold stimulation using quantitative susceptibility mapping[J]. Chin Med J, 2023, 136(17): 2137-2139. DOI: 10.1097/CM9.0000000000002388.
[43]
BRANCA R T, HE T, ZHANG L, et al. Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI[J]. Proc Natl Acad Sci U S A, 2014, 111(50): 18001-18006. DOI: 10.1073/pnas.1403697111.
[44]
RIIS-VESTERGAARD M J, BREINING P, PEDERSEN S B, et al. Evaluation of active brown adipose tissue by the use of hyperpolarized[1-13C]Pyruvate MRI in mice[J/OL]. Int J Mol Sci, 2018, 19(9): 2597 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/30200469/. DOI: 10.3390/ijms19092597.
[45]
ZHANG L, ANTONACCI M, BURANT A, et al. Absolute thermometry of human brown adipose tissue by magnetic resonance with laser polarized 129Xe[J/OL]. Commun Med, 2023, 3(1): 147 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/37848608/. DOI: 10.1038/s43856-023-00374-x.
[46]
HUO M J, YE J Z, DONG Z, et al. Quantification of brown adipose tissue in vivo using synthetic magnetic resonance imaging: an experimental study with mice model[J]. Quant Imaging Med Surg, 2022, 12(1): 526-538. DOI: 10.21037/qims-20-1344.
[47]
HUO M J, YE J Z, ZHANG Y H, et al. Quantitative assessment of brown adipose tissue whitening in a high-fat-diet murine model using synthetic magnetic resonance imaging[J/OL]. Heliyon, 2024, 10(6): e27314 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/38509886/. DOI: 10.1016/j.heliyon.2024.e27314.
[48]
MINIEWSKA K, MALISZEWSKA K, PIETROWSKA K, et al. PET/MRI-evaluated activation of brown adipose tissue via cold exposure impacts lipid metabolism[J/OL]. Metabolites, 2022, 12(5): 456 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/35629960/. DOI: 10.3390/metabo12050456.
[49]
MALISZEWSKA K, ADAMSKA-PATRUNO E, MINIEWSKA K, et al. Different protein sources enhance 18FDG-PET/MR uptake of brown adipocytes in male subjects[J/OL]. Nutrients, 2022, 14(16): 3411 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/36014915/. DOI: 10.3390/nu14163411.
[50]
LUNDSTRÖM E, ANDERSSON J, ENGSTRÖM M, et al. PET/MRI of glucose metabolic rate, lipid content and perfusion in human brown adipose tissue[J/OL]. Sci Rep, 2021, 11(1): 14955 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/34294741/. DOI: 10.1038/s41598-021-87768-w.
[51]
YALIGAR J, VERMA S K, GOPALAN V, et al. Dynamic contrast-enhanced MRI of brown and beige adipose tissues[J]. Magn Reson Med, 2020, 84(1): 384-395. DOI: 10.1002/mrm.28118.
[52]
ZHANG Y Q, HU S, SHANGGUAN J J, et al. MRI assessment of associations between brown adipose tissue and Cachexia in murine pancreatic ductal adenocarcinoma[J/OL]. Intern Med Open Access, 2019, 9(1): 301 [2024-08-03]. https://pubmed.ncbi.nlm.nih.gov/31073508/. DOI: 10.4172/2165-8048.1000301.

PREV Research progress of radiomics inpredicting microvascular invasion of intrahepatic cholangicarcinoma
NEXT Guideline for prevention and treatment of cerebrovascular disease (2024 edition)
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn