Share:
Share this content in WeChat
X
Special Focu
The role of radiomics in predicting no disease progression after treatment of locally advanced rectal cancer
WANG Zekun  GENG Yikang  YU Tao 

Cite this article as: WANG Z K, GENG Y K, YU T. The role of radiomics in predicting no disease progression after treatment of locally advanced rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 61-67. DOI:10.12015/issn.1674-8034.2025.01.010.


[Abstract] Objective To investigate the ability of MRI imaging to predict disease-free survival (DFS) at 3 years after neoadjuant chemoradiotherapy (nCRT) for locally advanced rectal cancer (LARC).Materials and Methods Clinical informations and imaging data of 100 patients with LARC were retrospectively analyzed, including 50 patients with disease progression and 50 patients without disease progression. The training set and test set were randomly allocated according to 4∶1. The imaging features of T2WI axis fast spin echo (FSE) and T2WI sagittal were extracted from preoperative MRI, and then dimensionality was reduced using minimum redundancy maximum correlation filter. Logistic regression was used to construct a nomogram containing the clinical parameter carbohydrate antigen 19-9 (CA19-9). Receiver operating characteristi (ROC), decision curve analysis (DCA) and calibration curves were drawn to evaluate the nomogram prediction effect.Results In clinical information, CA19-9 level was statistically significant in training set and test set (P < 0.05). Among the key imaging features, the features of T2WI sagittal and T2WI FSE sequences contributed the most to the prediction of DFS. Our model demonstrated high predictive accuracy on both the training and validation sets, with the area under the ROC curve (AUC) reached 0.933 [95% confidence interval (CI): 79.7% to 100.0%] and 0.980 (CI: 79.7% to 100.0%) on the training set and validation set, respectively.Conclusions The radiomics model established in this study can effectively predict DFS after nCRT in LARC patients, which can provide an important reference for clinical decision-making.
[Keywords] locally advanced rectal cancer;magnetic resonance imaging;radiomics;prediction;disease-free survival

WANG Zekun1   GENG Yikang2   YU Tao1*  

1 Department of Medical Imaging, Liaoning Cancer Hospital & Institute, China Medical University Cancer Hospital, Dalian University of Technology Affiliated Cancer Hospital, Shenyang 110042, China

2 School of Intelligent Medicine of China Medical University, Shenyang 110042, China

Corresponding author: YU T, E-mail: yutao1482@dlut.edu.cn

Conflicts of interest   None.

Received  2024-08-23
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.010
Cite this article as: WANG Z K, GENG Y K, YU T. The role of radiomics in predicting no disease progression after treatment of locally advanced rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 61-67. DOI:10.12015/issn.1674-8034.2025.01.010.

[1]
MILLER K D, NOGUEIRA L, DEVASIA T, et al. Cancer treatment and survivorship statistics, 2022[J]. CA Cancer J Clin, 2022, 72(5): 409-436. DOI: 10.3322/caac.21731.
[2]
NICOLAS A M, PESIC M, ENGEL E, et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer[J/OL]. Cancer Cell, 2022, 40(2): 168-184.e13 [2024-02-06]. https://pubmed.ncbi.nlm.nih.gov/35120600/. DOI: 10.1016/j.ccell.2022.01.004.
[3]
General Office of National Health Commission of the People's Republic of China, Oncology Branch of the Chinese Medical Association. The Standard for Diagnosis and Treatment of Chinese Colorectal Cancer(2023 Version)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 706-733. DOI: 10.12290/xhyxzz.2023-0315.
[4]
GUIDA A M, SENSI B, FORMICA V, et al. Total neoadjuvant therapy for the treatment of locally advanced rectal cancer: a systematic minireview[J/OL]. Biol Direct, 2022, 17(1): 16 [2024-02-06]. https://biologydirect.biomedcentral.com/articles/10.1186/s13062-022-00329-7. DOI: 10.1186/s13062-022-00329-7.
[5]
LIU S, JIANG T, XIAO L, et al. Total neoadjuvant therapy (TNT) versus standard neoadjuvant chemoradiotherapy for locally advanced rectal cancer: a systematic review and meta-analysis[J/OL]. Oncologist, 2021, 26(9): e1555-e1566 [2024-02-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8417863/. DOI: 10.1002/onco.13824.
[6]
SUTERA P, SOLOMINA J, WEGNER R E, et al. Post-operative morbidity and mortality following total neoadjuvant therapy versus conventional neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. J Gastrointest Cancer, 2021, 52(3): 976-982. DOI: 10.1007/s12029-020-00401-3.
[7]
GLYNNE-JONES R, WYRWICZ L, TIRET E, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2017, 28(suppl_4): iv22-iv40. DOI: 10.1093/annonc/mdx224.
[8]
MENG Y K, ZHANG Y C, DONG D, et al. Novel radiomic signature as a prognostic biomarker for locally advanced rectal cancer[J/OL]. J Magn Reson Imaging, 2018 [2024-02-13]. https://pubmed.ncbi.nlm.nih.gov/29437271/. DOI: 10.1002/jmri.25968.
[9]
LI M, ZHU Y Z, ZHANG Y C, et al. Radiomics of rectal cancer for predicting distant metastasis and overall survival[J]. World J Gastroenterol, 2020, 26(33): 5008-5021. DOI: 10.3748/wjg.v26.i33.5008.
[10]
CHILOIRO G, CUSUMANO D, ROMANO A, et al. Delta radiomic analysis of mesorectum to predict treatment response and prognosis in locally advanced rectal cancer[J/OL]. Cancers, 2023, 15(12): 3082 [2024-02-18]. https://www.mdpi.com/2072-6694/15/12/3082. DOI: 10.3390/cancers15123082.
[11]
MENG X C, XIA W, XIE P Y, et al. Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer[J]. Eur Radiol, 2019, 29(6): 3200-3209. DOI: 10.1007/s00330-018-5763-x.
[12]
CUI Y F, YANG X T, SHI Z Q, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Eur Radiol, 2019, 29(3): 1211-1220. DOI: 10.1007/s00330-018-5683-9.
[13]
LIU X Y, ZHANG D F, LIU Z Y, et al. Deep learning radiomics-based prediction of distant metastasis in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy: a multicentre study[J/OL]. EBioMedicine, 2021, 69: 103442 [2024-02-13]. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(21)00235-8/fulltext. DOI: 10.1016/j.ebiom.2021.103442.
[14]
TIBERMACINE H, ROUANET P, SBARRA M, et al. Radiomics modelling in rectal cancer to predict disease-free survival: evaluation of different approaches[J]. Br J Surg, 2021, 108(10): 1243-1250. DOI: 10.1093/bjs/znab191.
[15]
SHAMSEDDINE A, MACHMOUCHI A, NATOUT M, et al. Assessment of immunoscore and MRI tumor regression grade to predict complete pathologic response in patients with locally advanced rectal cancer: Data from phase Ⅱ Averectal study[J/OL]. J Clin Oncol, 2023, 41(4_suppl): 212 [2024-02-13]. https://ascopubs.org/doi/10.1200/JCO.2023.41.4_suppl.212. DOI: 10.1200/jco.2023.41.4_suppl.212.
[16]
ZHANG Z H, JIANG X R, ZHANG R, et al. Radiomics signature as a new biomarker for preoperative prediction of neoadjuvant chemoradiotherapy response in locally advanced rectal cancer[J]. Diagn Interv Radiol, 2021, 27(3): 308-314. DOI: 10.5152/dir.2021.19677.
[17]
LIU Z Y, ZHANG X Y, SHI Y J, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Clin Cancer Res, 2017, 23(23): 7253-7262. DOI: 10.1158/1078-0432.CCR-17-1038.
[18]
SCLAFANI F, BROWN G, CUNNINGHAM D, et al. Comparison between MRI and pathology in the assessment of tumour regression grade in rectal cancer[J]. Br J Cancer, 2017, 117(10): 1478-1485. DOI: 10.1038/bjc.2017.320.
[19]
FAN S X, CUI X N, LIU C L, et al. CT-based radiomics signature: a potential biomarker for predicting postoperative recurrence risk in stage Ⅱ colorectal cancer[J/OL]. Front Oncol, 2021, 11: 644933 [2024-02-13]. https://pubmed.ncbi.nlm.nih.gov/33816297/. DOI: 10.3389/fonc.2021.644933.
[20]
AKER M, GANESHAN B, AFAQ A, et al. Magnetic resonance texture analysis in identifying complete pathological response to neoadjuvant treatment in locally advanced rectal cancer[J]. Dis Colon Rectum, 2019, 62(2): 163-170. DOI: 10.1097/DCR.0000000000001224.
[21]
ZHOU X Z, YI Y J, LIU Z Y, et al. Radiomics-based pretherapeutic prediction of non-response to neoadjuvant therapy in locally advanced rectal cancer[J]. Ann Surg Oncol, 2019, 26(6): 1676-1684. DOI: 10.1245/s10434-019-07300-3.
[22]
SHIN J, SEO N, BAEK S E, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy[J]. Radiology, 2022, 303(2): 351-358. DOI: 10.1148/radiol.211986.
[23]
FUNINGANA I G, PIYATISSA P, REINIUS M, et al. Radiomic and volumetric measurements as clinical trial endpoints-a comprehensive review[J/OL]. Cancers, 2022, 14(20): 5076 [2024-02-18]. https://www.mdpi.com/2072-6694/14/20/5076. DOI: 10.3390/cancers14205076.
[24]
RIZZO S, BOTTA F, RAIMONDI S, et al. Radiomics: the facts and the challenges of image analysis[J/OL]. Eur Radiol Exp, 2018, 2(1): 36 [2024-02-21]. https://eurradiolexp.springeropen.com/articles/10.1186/s41747-018-0068-z. DOI: 10.1186/s41747-018-0068-z.
[25]
ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
[26]
BOURBONNE V, SCHICK U, PRADIER O, et al. Radiomics approaches for the prediction of pathological complete response after neoadjuvant treatment in locally advanced rectal cancer: ready for prime time?[J/OL]. Cancers, 2023, 15(2): 432 [2024-02-13]. https://www.mdpi.com/2072-6694/15/2/432. DOI: 10.3390/cancers15020432.
[27]
BAHADOER R R, DIJKSTRA E A, VAN ETTEN B, et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22(1): 29-42. DOI: 10.1016/S1470-2045(20)30555-6.
[28]
CONROY T, BOSSET J F, ETIENNE P L, et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22(5): 702-715. DOI: 10.1016/S1470-2045(21)00079-6.
[29]
NIE K, HU P, ZHENG J J, et al. Incremental value of radiomics in 5-year overall survival prediction for stage Ⅱ-Ⅲ rectal cancer[J/OL]. Front Oncol, 2022, 12: 779030 [2024-2-13]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.779030/full. DOI: 10.3389/fonc.2022.779030.
[30]
WANG Y, MA L Y, YIN X P, et al. Radiomics and radiogenomics in evaluation of colorectal cancer liver metastasis[J/OL]. Front Oncol, 2022, 11: 689509 [2024-02-18]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.689509/full. DOI: 10.3389/fonc.2021.689509.
[31]
WANG F Q, TAN B F, POH S S, et al. Predicting outcomes for locally advanced rectal cancer treated with neoadjuvant chemoradiation with CT-based radiomics[J/OL]. Sci Rep, 2022, 12(1): 6167 [2024-02-21]. https://www.nature.com/articles/s41598-022-10175-2. DOI: 10.1038/s41598-022-10175-2.
[32]
MARZANO L, DARWICH A S, DAN A, et al. Exploring the discrepancies between clinical trials and real-world data: a small-cell lung cancer study[J/OL]. Clin Transl Sci, 2024, 17(8): e13909 [2024-02-21]. https://pubmed.ncbi.nlm.nih.gov/39113428/. DOI: 10.1111/cts.13909.
[33]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[34]
LAMBREGTS D M J, VANDECAVEYE V, BARBARO B, et al. Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study[J]. Ann Surg Oncol, 2011, 18(8): 2224-2231. DOI: 10.1245/s10434-011-1607-5.
[35]
O'CONNOR J P B, ABOAGYE E O, ADAMS J E, et al. Imaging biomarker roadmap for cancer studies[J]. Nat Rev Clin Oncol, 2017, 14(3): 169-186. DOI: 10.1038/nrclinonc.2016.162.

PREV A study on preoperative prediction of rectal cancer vascular invasion using MRI-based deep transfer learning radiomics
NEXT Differences in dynamic functional connectivity density in patients with traumatic axonal injury: A MRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn