Share:
Share this content in WeChat
X
Clinical Article
Differences in dynamic functional connectivity density in patients with traumatic axonal injury: A MRI study
LI Jian  CHEN Linglong  ZENG Xinyi  WANG Yuanyuan  OUYANG Feng  LI Shenghong  ZENG Xianjun 

Cite this article as: LI J, CHEN L L, ZENG X Y, et al. Differences in dynamic functional connectivity density in patients with traumatic axonal injury: A MRI study[J]. Chin J Magn Reson Imaging, 2025, 16(1): 68-73. DOI:10.12015/issn.1674-8034.2025.01.011.


[Abstract] Objective To investigate the temporal variability of functional brain network alterations in patients with traumatic axonal injury (TAI) utilizing the voxel-based dynamic functional connectivity density (dFCD) method.Materials and Methods We recruited 182 patients with traumatic brain injury attending the Department of Neurosurgery of the First Affiliated Hospital of Nanchang University and collected resting-state functional magnetic resonance data, from which we screened 26 patients with simple TAI that met the clinical diagnosis, and recruited matched 27 healthy controls in the community. The data processing toolkit DPABI based on MATLAB 2016b platform was used to preprocess the data, and then the temporal variability of dFCD was investigated based on the Dynamic BC toolbox combined with the sliding time window method, and finally the correlation between the dFCD values and the clinical scales was analyzed.Results Compared with controls, we found increased dFCD variability in the right hippocampus/parahippocampal gyrus and right insula/rolandic operculum (voxel level P < 0.01, cluster level P < 0.05, GRF corrected), and decreased dFCD variability in the right medial superior frontal gyrus, bilateral supplementary motor areas/left paracentral lobule/left precentral gyrus in patients with TAI (voxel level P < 0.01, cluster level P < 0.05, GRF corrected), mainly involved in the default mode network, salience network, and the sensorimotor network, and correlation analyses did not reveal significant correlations between dFCD values and clinical scales.Conclusions The results of dFCD variability in patients with TAI reflect more subtle changes in dynamic brain activity, deepening the understanding of abnormalities in whole-brain functional connectivity in patients with TAI.
[Keywords] traumatic axonal injury;functional connectivity density;dynamic;brain function;magnetic resonance imaging

LI Jian1, 2   CHEN Linglong1, 2   ZENG Xinyi1, 2   WANG Yuanyuan1, 2   OUYANG Feng1, 2   LI Shenghong1, 2   ZENG Xianjun1, 2*  

1 Department of Radiology, First Affiliated Hospital of Jiangxi Medical College of Nanchang University, Nanchang 330006, China

2 Clinical Research Center for Medical Imaging In Jiangxi Province, Nanchang 330006, China

Corresponding author: ZENG X J, E-mail: xianjun-zeng@126.com

Conflicts of interest   None.

Received  2024-10-27
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.011
Cite this article as: LI J, CHEN L L, ZENG X Y, et al. Differences in dynamic functional connectivity density in patients with traumatic axonal injury: A MRI study[J]. Chin J Magn Reson Imaging, 2025, 16(1): 68-73. DOI:10.12015/issn.1674-8034.2025.01.011.

[1]
LAMPROS M, VLACHOS N, TSITSOPOULOS P P, et al. The role of novel imaging and biofluid biomarkers in traumatic axonal injury: an updated review[J/OL]. Biomedicines, 2023, 11(8): 2312 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/37626808/. DOI: 10.3390/biomedicines11082312.
[2]
HAYES J P, BIGLER E D, VERFAELLIE M. Traumatic brain injury as a disorder of brain connectivity[J]. J Int Neuropsychol Soc, 2016, 22(2): 120-137. DOI: 10.1017/S1355617715000740.
[3]
SHARP D J, SCOTT G, LEECH R. Network dysfunction after traumatic brain injury[J]. Nat Rev Neurol, 2014, 10(3): 156-166. DOI: 10.1038/nrneurol.2014.15.
[4]
TOMASI D, VOLKOW N D. Functional connectivity density mapping[J]. Proc Natl Acad Sci U S A, 2010, 107(21): 9885-9890. DOI: 10.1093/brain/awad056.
[5]
GE L, CAO Z, SUN Z, et al. Functional connectivity density aberrance in type 2 diabetes mellitus with and without mild cognitive impairment[J/OL]. Front Neurol, 2024, 15: 1418714 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/38915801/. DOI: 10.3389/fneur.2024.1418714.
[6]
CHEN L L, LIANG C D, H F, et al. Altered functional connectivity density map and cognitive function after chemotherapy of young survivors of acute lymphoblastic leukemia[J]. J Pract Radiol, 2020, 36(7): 1107-1112. DOI: 10.3969/j.issn.1002-1671.2020.07.024.
[7]
NIU X Y, ZHANG Y, YANG Z G, et al. Changes of functional connectivity density in different severity of nicotine addicts: A functional magnetic resonance imaging study[J]. Chin J Magn Reson Imag, 2023, 14(4): 11-15. DOI: 10.12015/issn.1674-8034.2023.04.003.
[8]
CALHOUN V D, MILLER R, PEARLSON G, et al. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery[J]. Neuron, 2014, 84(2): 262-274. DOI: 10.1016/j.neuron.2014.10.015.
[9]
VIDAURRE D, SMITH S M, WOOLRICH M W. Brain network dynamics are hierarchically organized in time[J]. Proc Natl Acad Sci U S A, 2017, 114(48): 12827-12832. DOI: 10.1073/pnas.1705120114.
[10]
NIU X Y, ZHANG Y, YANG Z G, et al. Differences in dynamic functional connectivity density in individuals with light and heavy smoking addiction: a study based on functional MR[J]. Chin J Radiol, 2023, 57(5): 490-497. DOI: 10.3760/cma.j.cn112149-20220730-00403.
[11]
WEI Y, HAN S, CHEN J, et al. Abnormal interhemispheric and intrahemispheric functional connectivity dynamics in drug-naive first-episode schizophrenia patients with auditory verbal hallucinations[J]. Hum Brain Mapp, 2022, 43(14): 4347-4358. DOI: 10.1002/hbm.25958.
[12]
NI X, ZHANG J, SUN M, et al. Abnormal dynamics of functional connectivity density associated with chronic neck pain[J/OL]. Front Mol Neurosci, 2022, 15: 880228 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/35845606/. DOI: 10.3389/fnmol.2022.880228.
[13]
YANG Z, WEN M, WEI Y, et al. Alternations in dynamic and static functional connectivity density in chronic smokers[J/OL]. Front Psychiatry, 2022, 13: 843254 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/35530028/. DOI: 10.3389/fpsyt.2022.843254.
[14]
GUO X, DUAN X, CHEN H, et al. Altered inter- and intrahemispheric functional connectivity dynamics in autistic children[J]. Hum Brain Mapp, 2020, 41(2): 419-428. DOI: 10.1002/hbm.24812.
[15]
LI J, GAO L, XIE K, et al. Detection of functional homotopy in traumatic axonal injury[J]. Eur Radiol, 2017, 27(1): 325-335. DOI: 10.1007/s00330-016-4302-x.
[16]
LI R, WANG L, CHEN H, et al. Abnormal dynamics of functional connectivity density in children with benign epilepsy with centrotemporal spikes[J]. Brain Imaging Behav, 2019, 13(4): 985-994. DOI: 10.1007/s11682-018-9914-0.
[17]
MALLER J J, WELTON T, MIDDIONE M, et al. Revealing the hippocampal connectome through super-resolution 1150-direction diffusion MRI[J/OL]. Sci Rep, 2019, 9(1): 2418 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/30787303/. DOI: 10.1038/s41598-018-37905-9.
[18]
ABDUL R M, ABD H A, NOH N A, et al. Alteration in the functional organization of the default mode network following closed non-severe traumatic brain injury[J/OL]. Front Neurosci, 2022, 16: 833320 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/35418832/. DOI: 10.3389/fnins.2022.833320.
[19]
BONNELLE V, HAM T E, LEECH R, et al. Salience network integrity predicts default mode network function after traumatic brain injury[J]. Proc Natl Acad Sci U S A, 2012, 109(12): 4690-4695. DOI: 10.1073/pnas.1113455109.
[20]
KIM Y H, YOO W K, KO M H, et al. Plasticity of the attentional network after brain injury and cognitive rehabilitation[J]. Neurorehabil Neural Repair, 2009, 23(5): 468-477. DOI: 10.1177/1545968308328728.
[21]
ZHOU Z, LI X, DOMEL A G, et al. The presence of the temporal horn exacerbates the vulnerability of hippocampus during head impacts[J/OL]. Front Bioeng Biotechnol, 2022, 10: 754344 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/35392406/. DOI: 10.3389/fbioe.2022.754344.
[22]
KING D J, ELLIS K R, SERI S, et al. A systematic review of cross-sectional differences and longitudinal changes to the morphometry of the brain following paediatric traumatic brain injury[J/OL]. Neuroimage Clin, 2019, 23: 101844 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/31075554/. DOI: 10.1016/j.nicl.2019.101844.
[23]
GUERREO-GONZALEZ J M, KIRK G R, BIRN R, et al. Multi-modal MRI of hippocampal morphometry and connectivity after pediatric severe TBI[J]. Brain Imaging Behav, 2024, 18(1): 159-170. DOI: 10.1007/s11682-023-00818-x.
[24]
VAN DER HORN H J, SCHEENEN M E, DE KONING M E, et al. The default mode network as a biomarker of persistent complaints after mild traumatic brain injury: a longitudinal functional magnetic resonance imaging study[J]. J Neurotrauma, 2017, 34(23): 3262-3269. DOI: 10.1089/neu.2017.5185.
[25]
LU L, LI F, CHEN H, et al. Functional connectivity dysfunction of insular subdivisions in cognitive impairment after acute mild traumatic brain injury[J]. Brain Imaging Behav, 2020, 14(3): 941-948. DOI: 10.1007/s11682-020-00288-5.
[26]
SEELEY W W, MENON V, SCHATZBERG A F, et al. Dissociable intrinsic connectivity networks for salience processing and executive control[J]. J Neurosci, 2007, 27(9): 2349-2356. DOI: 10.1523/JNEUROSCI.5587-06.2007.
[27]
CHAND G B, WU J, HAJJAR I, et al. Interactions of insula subdivisions-based networks with default-mode and central-executive networks in mild cognitive impairment[J/OL]. Front Aging Neurosci, 2017, 9: 367 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/29170635/. DOI: 10.3389/fnagi.2017.00367.
[28]
VAKHTIN A A, CALHOUN V D, JUNG R E, et al. Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury[J]. Brain Inj, 2013, 27(11): 1304-1310. DOI: 10.3109/02699052.2013.823561.
[29]
LIU H, ZHANG G, ZHENG H, et al. Dynamic dysregulation of the triple network of the brain in mild traumatic brain injury and Its relationship with cognitive performance[J]. J Neurotrauma, 2024, 41(7-8): 879-886. DOI: 10.1089/neu.2022.0257.
[30]
GONZALEZ-CASTILLO J, HANDWERKER D A, ROBINSON M E, et al. The spatial structure of resting state connectivity stability on the scale of minutes[J/OL]. Front Neurosci, 2014, 8: 138 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/24999315/. DOI: 10.3389/fnins.2014.00138.
[31]
STEPHENS J A, LIU P, LU H, et al. Cerebral blood flow after mild traumatic brain injury: associations between symptoms and post-Injury perfusion[J]. J Neurotrauma, 2018, 35(2): 241-248. DOI: 10.1089/neu.2017.5237.
[32]
ZHOU L, TIAN N, GENG Z J, et al. Diffusion tensor imaging study of brain precentral gyrus and postcentral gyrus during normal brain aging process[J/OL]. Brain Behav, 2020, 10(10): e1758 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/32844600/. DOI: 10.1002/brb3.1758.
[33]
SHUMSKAYA E, VAN GERVEN M A, NORRIS D G, et al. Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury[J]. Exp Brain Res, 2017, 235(3): 799-807. DOI: 10.1007/s00221-016-4841-z.

PREV The role of radiomics in predicting no disease progression after treatment of locally advanced rectal cancer
NEXT Comparison of brain functional alterations in young adults with pre-diabetes and type 2 diabetes mellitus
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn