Share:
Share this content in WeChat
X
Clinical Article
Comparison of brain functional alterations in young adults with pre-diabetes and type 2 diabetes mellitus
GONG Liya  GAO Mingxuan  WEN Junyan  WU Ziqi  LUO Jingwen  JING Linlin  WEN Ge 

Cite this article as: GONG L Y, GAO M X, WEN J Y, et al. Comparison of brain functional alterations in young adults with pre-diabetes and type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2025, 16(1): 74-80. DOI:10.12015/issn.1674-8034.2025.01.012.


[Abstract] Objective To explore the abnormal spontaneous neural activity in young adults with pre-diabetes mellitus (PDM) and type 2 diabetes mellitus (T2DM) and its relationship with clinical indicators and cognitive function.Materials and Methods This study prospectively enrolled 34 patients with T2DM, 35 patients with PDM, and 34 normal controls (NC), all under the age of 40. All participants underwent comprehensive laboratory examinations and 3.0 T rs-fMRI scanning. Following image preprocessing, low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC) indices were computed. Two-sample t-tests were employed to compare differences between groups, with gender, age, and years of education controlled as covariates. Additionally, correlations between rs-fMRI indices, clinical indicators, and cognitive scores were evaluated.Results Compared to healthy controls, the PDM group showed increased spontaneous neural activity in several brain regions, such as the left inferior frontal gyrus (t = 4.710, GRF corrected, voxel-level P < 0.005, cluster-level P < 0.05), along with decreased activity in regions such as the right inferior parietal lobule (t = -4.097, GRF corrected, voxel-level P < 0.005, cluster-level P < 0.05). Similarly, the T2DM group exhibited enhanced spontaneous neural activity in multiple brain areas, including the left inferior frontal gyrus (t = 6.348, GRF corrected, voxel-level P < 0.005, cluster-level P < 0.05), as well as reduced activity in regions like the right inferior parietal lobule (t = -5.141, GRF corrected, voxel-level P < 0.005, cluster-level P < 0.05). Additionally, significant correlations were observed between certain resting-state fMRI metrics and clinical indicators or cognitive scores. For example, in the PDM group, the ALFF value of the right middle frontal gyrus showed a significant negative correlation with the MoCA score (r = -0.410, P = 0.014).Conclusions Our study demonstrates that brain functional indices in young individuals with PDM and T2DM are associated with clinical indicators and cognitive function. Our findings enhance the understanding of the pathophysiology of diabetic brain injury and provide potential biological evidence for its early diagnosis.
[Keywords] pre-diabetes mellitus;type 2 diabetes mellitus;magnetic resonance imaging;amplitude of low frequency fluctuation;regional homogeneity;degree centrality

GONG Liya1   GAO Mingxuan1   WEN Junyan1   WU Ziqi1   LUO Jingwen1   JING Linlin2   WEN Ge1*  

1 Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

2 Operating Room, Traditional Chinese Medicine Integrated Hospital, Southern Medical University, Guangzhou 510315, China

Corresponding author: WEN G, E-mail: wenge@smu.edu.cn

Conflicts of interest   None.

Received  2024-09-25
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.012
Cite this article as: GONG L Y, GAO M X, WEN J Y, et al. Comparison of brain functional alterations in young adults with pre-diabetes and type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2025, 16(1): 74-80. DOI:10.12015/issn.1674-8034.2025.01.012.

[1]
CHO N H, SHAW J E, KARURANGA S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138: 271-281. DOI: 10.1016/j.diabres.2018.02.023.
[2]
ZHANG Y, SHEN T, WANG S. Progression from prediabetes to type 2 diabetes mellitus induced by overnutrition[J]. Hormones, 2022, 21(4): 591-597. DOI: 10.1007/s42000-022-00399-2.
[3]
TITMUSS A, KORULA S, WICKLOW B, et al. Youth-onset type 2 diabetes: An overview of pathophysiology, prognosis, prevention and management[J]. Curr Diab Rep, 2024, 24(8): 183-195. DOI: 10.1007/s11892-024-01546-2.
[4]
ANTAL B, MCMAHON L P, SULTAN S F, et al. Type 2 diabetes mellitus accelerates brain aging and cognitive decline: Complementary findings from UK Biobank and meta-analyses[J/OL]. Elife, 2022, 11: e73138 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/35608247/. DOI: 10.7554/eLife.73138.
[5]
GAO S, CHEN Y, SANG F, et al. White matter microstructural change contributes to worse cognitive function in patients with type 2 diabetes[J]. Diabetes, 2019, 68(11): 2085-2094. DOI: 10.2337/db19-0233.
[6]
ATHANASAKI A, MELANIS K, TSANTZALI I, et al. Type 2 diabetes mellitus as a risk factor for Alzheimer's disease: Review and meta-analysis[J/OL]. Biomedicines, 2022, 10(4): 778 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/35453527/. DOI: 10.3390/biomedicines10040778.
[7]
YU Y, YAN L F, SUN Q, et al. Neurovascular decoupling in type 2 diabetes mellitus without mild cognitive impairment: Potential biomarker for early cognitive impairment[J]. Neuroimage, 2019, 200: 644-658. DOI: 10.1016/j.neuroimage.2019.06.058.
[8]
GROENEVELD O N, VAN DEN BERG E, RUTTEN G, et al. Applicability of diagnostic constructs for cognitive impairment in patients with type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, 2018, 142: 92-99. DOI: 10.1016/j.diabres.2018.05.025.
[9]
FANG F, GONG Y J, LUO Q, et al. Cognitive dysfunction in type 2 diabetes is not a one-way process: Evidence from a longitudinal brain connectivity study[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 874538 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/35573998/. DOI: 10.3389/fendo.2022.874538.
[10]
SOLA T, SOLA F M, JEHKONEN M. The effects of type 2 diabetes on cognitive performance: A review of reviews[J]. Int J Behav Med, 2024, 31(6): 944-958. DOI: 10.1007/s12529-024-10274-6.
[11]
RANI S, DHAR S B, KHAJURIA A, et al. Advanced overview of biomarkers and techniques for early diagnosis of Alzheimer's disease[J]. Cell Mol Neurobiol, 2023, 43(6): 2491-2523. DOI: 10.1007/s10571-023-01330-y.
[12]
GAO Y J, SUN J, GUO X, et al. Research progress of resting-state functional magnetic resonance imaging in the auxiliary diagnosis and early prognosis of bipolar disorder[J]. Chin J Magn Reson Imaging, 2023, 14(12): 111-115. DOI: 10.12015/issn.1674-8034.2023.12.019.
[13]
LIU J, LI Y, YANG X, et al. Regional spontaneous neural activity alterations in type 2 diabetes mellitus: A meta-analysis of resting-state functional MRI studies[J/OL]. Front Aging Neurosci, 2021, 13: 678359 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/34220486. DOI: 10.3389/fnagi.2021.678359.
[14]
HONG S B. Brain regional homogeneity and its association with age and intelligence in typically developing youth[J/OL]. Asian J Psychiatr, 2023, 82: 103497 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/36764248. DOI: 10.1016/j.ajp.2023.103497.
[15]
SHAN A, ZHANG H, GAO M, et al. Aberrant voxel-based degree centrality and functional connectivity in Parkinson's disease patients with fatigue[J]. CNS Neurosci Ther, 2023, 29(9): 2680-2689. DOI: 10.1111/cns.14212.
[16]
LIU H, LIU J, PENG L, et al. Changes in default mode network connectivity in different glucose metabolism status and diabetes duration[J/OL]. Neuroimage Clin, 2019, 21: 101629 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/30573410. DOI: 10.1016/j.nicl.2018.101629.
[17]
ZHANG Z, ZHANG B, WANG X, et al. Olfactory dysfunction mediates adiposity in cognitive impairment of type 2 diabetes: Insights from clinical and functional neuroimaging studies[J]. Diabetes Care, 2019, 42(7): 1274-1283. DOI: 10.2337/dc18-2584.
[18]
LI C, ZUO Z, LIU D, et al. Type 2 diabetes mellitus may exacerbate gray matter atrophy in patients with early-onset mild cognitive impairment[J/OL]. Front Neurosci, 2020, 14: 856 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/32848591. DOI: 10.3389/fnins.2020.00856.
[19]
XIONG Y, CHEN X, ZHAO X, et al. Altered regional homogeneity and functional brain networks in type 2 diabetes with and without mild cognitive impairment[J/OL]. Sci Rep, 2020, 10: 21254 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/33277510. DOI: 10.1038/s41598-020-76495-3.
[20]
YAO Y, WANG B, GENG T, et al. The association between TyG and all-cause/non-cardiovascular mortality in general patients with type 2 diabetes mellitus is modified by age: results from the cohort study of NHANES 1999-2018[J/OL]. Cardiovasc Diabetol, 2024, 23: 43 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/38281973. DOI: 10.1186/s12933-024-02120-6.
[21]
ZHENG H, CHEN G, WU K, et al. Relationship between cumulative exposure to triglyceride-glucose index and heart failure: a prospective cohort study[J/OL]. Cardiovasc Diabetol, 2023, 22: 239 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/37667253. DOI: 10.1186/s12933-023-01967-5.
[22]
AMERICAN DIABETES ASSOCIATION PROFESSIONAL PRACTICE C. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022[J]. Diabetes Care, 2022, 45(Suppl 1): S17-S38. DOI: 10.2337/dc22-S002.
[23]
YAN C G, WANG X D, ZUO X N, et al. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[24]
ASHBURNER J. A fast diffeomorphic image registration algorithm[J]. Neuroimage, 2007, 38(1): 95-113. DOI: 10.1016/j.neuroimage.2007.07.007.
[25]
FRISTON K J, WILLIAMS S, HOWARD R, et al. Movement-related effects in fMRI time-series[J]. Magn Reson Med, 1996, 35(3): 346-355. DOI: 10.1002/mrm.1910350312.
[26]
XIE H, YU Y, YANG Y, et al. Commonalities and distinctions between the type 2 diabetes mellitus and Alzheimer's disease: a systematic review and multimodal neuroimaging meta-analysis[J/OL]. Front Neurosci, 2023, 17: 1301778 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/38125399. DOI: 10.3389/fnins.2023.1301778.
[27]
XIA W, WANG S, SUN Z, et al. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study[J]. Psychoneuroendocrinology, 2013, 38(11): 2493-2501. DOI: 10.1016/j.psyneuen.2013.05.012.
[28]
WANG Q, HOU C, JIANG X, et al. Alterations of spontaneous brain activity in type 2 diabetes mellitus without mild cognitive impairment: a resting-state functional magnetic resonance study[J/OL]. Front Hum Neurosci, 2023, 17: 1305571 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/38273877. DOI: 10.3389/fnhum.2023.1305571.
[29]
LIU D, DUAN S, ZHANG J, et al. Aberrant Brain Regional Homogeneity and Functional Connectivity in Middle-Aged T2DM Patients: A Resting-State Functional MRI Study[J/OL]. Front Hum Neurosci, 2016, 10: 490 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/27729856. DOI: 10.3389/fnhum.2016.00490.
[30]
QIN D, QIAN H, QI S, et al. Analysis of Rs-Fmri Images Clarifies Brain Alterations in Type 2 Diabetes Mellitus Patients with Cognitive Impairment[J/OL]. Journal of Mechanics in Medicine and Biology, 2021, 21(5): 2140015 [2024-09-25]. https://www.worldscientific.com/doi/abs/10.1142/S0219519421400157. DOI: 10.1142/s0219519421400157.
[31]
PIZZAGALLI D A, ROBERTS A C. Prefrontal cortex and depression[J]. Neuropsychopharmacology, 2022, 47(1): 225-246. DOI: 10.1038/s41386-021-01101-7.
[32]
NUMSSEN O, BZDOK D, HARTWIGSEN G. Functional specialization within the inferior parietal lobes across cognitive domains[J/OL]. Elife, 2021, 10: e63591 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/33650486. DOI: 10.7554/eLife.63591.
[33]
LI Y, LI M, FENG Y, et al. Aberrant brain spontaneous activity and synchronization in type 2 diabetes mellitus subjects without mild cognitive impairment[J/OL]. Front Neurosci, 2021, 15: 749730 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/34975372. DOI: 10.3389/fnins.2021.749730.
[34]
MESULAM M M. Temporopolar regions of the human brain[J]. Brain, 2023, 146(1): 20-41. DOI: 10.1093/brain/awac339.
[35]
WU Z, BUCKLEY M J. Prefrontal and medial temporal lobe cortical contributions to visual short-term memory[J]. J Cogn Neurosci, 2022, 35(1): 27-43. DOI: 10.1162/jocn_a_01937.
[36]
VITOLO E, DIANO M, GIROMINI L, et al. Markers of emotion regulation processes: A neuroimaging and behavioral study of reappraising abilities[J/OL]. Biological Psychology, 2022, 171: 108349 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/35569572/. DOI: 10.1016/j.biopsycho.2022.108349.
[37]
CHANDLEY M J, SZEBENI A, SZEBENI K, et al. Markers of elevated oxidative stress in oligodendrocytes captured from the brainstem and occipital cortex in major depressive disorder and suicide[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2022, 117: 110559 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/35452747/. DOI: 10.1016/j.pnpbp.2022.110559.
[38]
GONG J, WANG J, QIU S, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis[J/OL]. Transl Psychiatry, 2020, 10: 353 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/33077728. DOI: 10.1038/s41398-020-01036-5.
[39]
ZENG H, FINK G R, WEIDNER R. Visual size processing in early visual cortex follows lateral occipital cortex involvement[J]. The Journal of Neuroscience, 2020, 40(22): 4410-4417. DOI: 10.1523/jneurosci.2437-19.2020.
[40]
MCCARTHY E, DUNN J, AUGUSTINE K, et al. Prolonged hyperglycemia causes visual and cognitive deficits in danio rerio[J/OL]. International Journal of Molecular Sciences, 2022, 23(17): 10167 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/36077569/. DOI: 10.3390/ijms231710167.
[41]
GRUBER J R, RUF A, SUSS E D, et al. Impact of blood glucose on cognitive function in insulin resistance: novel insights from ambulatory assessment[J/OL]. Nutr Diabetes, 2024, 14: 74 [2024-09-25]. https://www.ncbi.nlm.nih.gov/pubmed/39261457. DOI: 10.1038/s41387-024-00331-0.

PREV Differences in dynamic functional connectivity density in patients with traumatic axonal injury: A MRI study
NEXT Free water imaging in white matter of early-stage tremor-dominant Parkinson,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn