Share:
Share this content in WeChat
X
Clinical Article
Free water imaging in white matter of early-stage tremor-dominant Parkinson's disease
DING Kaiyue  SHEN Yu  BAI Yan  WEI Wei  WANG Xinhui  ZHOU Yihang  LIU Shuo  WANG Meiyun 

Cite this article as: DING K Y, SHEN Y, BAI Y, et al. Free water imaging in white matter of early-stage tremor-dominant Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(1): 81-88. DOI:10.12015/issn.1674-8034.2025.01.013.


[Abstract] Objective Tremor-dominant Parkinson's disease (TDPD) is considered a benign subtype of Parkinson's disease. Early identification of microstructural alterations in TDPD is critical for advancing our understanding of its disease trajectory and for optimizing early therapeutic interventions. This study aims to explore microstructural alterations in the white matter tracts of the brain in early-stage TDPD using free water imaging (FWI). Furthermore, the study investigates the relationship between these alterations and clinical symptoms, thereby uncovering the pathophysiological mechanisms of early-stage TDPD.Materials and Methods FWI data from 39 early-stage TDPD patients (H-Y stage 1 or 2) and 38 healthy controls (HC) were analyzed in this study to identify white matter tract abnormalities. Free water (FW), fractional anisotropy (FA), and mean diffusivity (MD) values were extracted from white matter regions showing significant differences between groups. These values were subsequently correlated with clinical measures, including the MDS-UPDRS Ⅲ score and tremor sub-scores, using multiple linear regression analysis. Furthermore, logistic regression as employed to assess the relationship between FW values and H-Y stage, providing insights into the pathophysiological mechanisms underlying early-stage TDPD.Results In early TDPD patients, white matter fiber tracts exhibited significantly increased FW values (P < 0.05), notably in the genu of corpus callosum (t = 1.909, P = 0.049) and the bilateral anterior limb of the internal capsule (left t = 2.194, P = 0.049; right t = 2.064, P = 0.048). No significant differences were found in MD values of these tracts between groups. However, the FA values, prior to TFCE correction (P < 0.05), were significantly reduced in the genu of corpus callosum (t = -1.832, P = 0.029) and the bilateral superior corona radiata (left t = -2.012, P = 0.034; right t = -1.881, P = 0.021). These findings suggest that the white matter tracts may be indicative of neurodegenerative processes. The FW value in the left anterior limb of internal capsule was significantly positively correlated with the MDS-UPDRS tremor score (β = 32.798, P < 0.001) and the MDS-UPDRS Ⅲ score (β = 98.496, P = 0.012). Additionally, binary logistic regression analysis revealed that the FW value of the right superior longitudinal fasciculus served as a significant predictor of H-Y staging (β = 0.97, P = 0.04).Conclusions FWI can sensitively detect microstructural alterations in the white matter tracts of early-stage TDPD patients. The study indicates extensive neuroinflammatory changes in the white matter microstructure of TDPD patients, providing new insights for the diagnosis and evaluation of clinical symptoms of the disease.
[Keywords] tremor-dominant Parkinson's disease;early-stage Parkinson's disease;diffusion tensor imaging;free water imaging;magnetic resonance imaging

DING Kaiyue1, 2   SHEN Yu2   BAI Yan2   WEI Wei2   WANG Xinhui2   ZHOU Yihang2   LIU Shuo2   WANG Meiyun1, 2, 3*  

1 Department of Medical Imaging, People's Hospital of Henan University, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

3 Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou 450003, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2024-05-20
Accepted  2024-12-16
DOI: 10.12015/issn.1674-8034.2025.01.013
Cite this article as: DING K Y, SHEN Y, BAI Y, et al. Free water imaging in white matter of early-stage tremor-dominant Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(1): 81-88. DOI:10.12015/issn.1674-8034.2025.01.013.

[1]
ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: A review[J]. JAMA, 2020, 323(6): 548-560. DOI: 10.1001/jama.2019.22360.
[2]
TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5): 385-397. DOI: 10.1016/s1474-4422(21)00030-2.
[3]
PIRKER W, KATZENSCHLAGER R, HALLETT M, et al. Pharmacological treatment of tremor in Parkinson's disease revisited[J]. J Parkinsons Dis, 2023, 13(2): 127-144. DOI: 10.3233/jpd-225060.
[4]
DIRKX M F, BOLOGNA M. The pathophysiology of Parkinson's disease tremor[J/OL]. J Neurol Sci, 2022, 435: 120196 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/35240491/. DOI: 10.1016/j.jns.2022.120196.
[5]
FEARON C, LEES A J, MCKINLEY J J, et al. On the emergence of tremor in prodromal Parkinson's disease[J]. J Parkinsons Dis, 2021, 11(1): 261-269. DOI: 10.3233/jpd-202322.
[6]
PASQUINI J, DEUSCHL G, PECORI A, et al. The clinical profile of tremor in Parkinson's disease[J]. Mov Disord Clin Pract, 2023, 10(10): 1496-1506. DOI: 10.1002/mdc3.13845.
[7]
PASQUINI J, CERAVOLO R, QAMHAWI Z, et al. Progression of tremor in early stages of Parkinson's disease: a clinical and neuroimaging study[J]. Brain, 2018, 141(3): 811-821. DOI: 10.1093/brain/awx376.
[8]
MULROY E, BALINT B, MENOZZI E, et al. Benign tremulous parkinsonism of the young-consider Parkin[J]. Parkinsonism Relat Disord, 2019, 65: 270-271. DOI: 10.1016/j.parkreldis.2019.05.027.
[9]
DIRKX M F, ZACH H, VAN NULAND A, et al. Cerebral differences between dopamine-resistant and dopamine-responsive Parkinson's tremor[J]. Brain, 2019, 142(10): 3144-3157. DOI: 10.1093/brain/awz261.
[10]
RAJPUT A H, RAJPUT E F, BOCKING S M, et al. Parkinsonism in essential tremor cases: A clinicopathological study[J]. Mov Disord, 2019, 34(7): 1031-1040. DOI: 10.1002/mds.27729.
[11]
DIRKX M F, DEN OUDEN H, AARTS E, et al. The cerebral network of Parkinson's tremor: An effective connectivity fMRI study[J]. J Neurosci, 2016, 36(19): 5362-5372. DOI: 10.1523/jneurosci.3634-15.2016.
[12]
QUARANTELLI M, QUATTRONE A, SARICA A, et al. Functional connectivity of the cortico-subcortical sensorimotor loop is modulated by the severity of nigrostriatal dopaminergic denervation in Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2022, 8(1): 122 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/36171211/. DOI: 10.1038/s41531-022-00385-w.
[13]
ANDICA C, KAMAGATA K, SAITO Y, et al. Fiber-specific white matter alterations in early-stage tremor-dominant Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2021, 7(1): 51 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/34172728/. DOI: 10.1038/s41531-021-00197-4.
[14]
YANG K, WU Z, LONG J, et al. White matter changes in Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2023, 9(1): 150 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/37907554/. DOI: 10.1038/s41531-023-00592-z.
[15]
BAE Y J, KIM J M, SOHN C H, et al. Imaging the substantia nigra in Parkinson disease and other Parkinsonian syndromes[J]. Radiology, 2021, 300(2): 260-278. DOI: 10.1148/radiol.2021203341.
[16]
ROLHEISER T M, FULTON H G, GOOD K P, et al. Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson's disease[J]. J Neurol, 2011, 258(7): 1254-1260. DOI: 10.1007/s00415-011-5915-2.
[17]
HOY A R, KOAY C G, KECSKEMETI S R, et al. Optimization of a free water elimination two-compartment model for diffusion tensor imaging[J]. Neuroimage, 2014, 103: 323-333. DOI: 10.1016/j.neuroimage.2014.09.053.
[18]
BECK D, DE LANGE A G, MAXIMOV, II, et al. White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction[J/OL]. Neuroimage, 2021, 224: 117441 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/33039618/. DOI: 10.1016/j.neuroimage.2020.117441.
[19]
BERGER M, PIRPAMER L, HOFER E, et al. Free water diffusion MRI and executive function with a speed component in healthy aging[J/OL]. Neuroimage, 2022, 257: 119303 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/35568345/. DOI: 10.1016/j.neuroimage.2022.119303.
[20]
LAKHANI D A, ZHOU X, TAO S, et al. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2024, 10(1): 13 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/38191546/. DOI: 10.1038/s41531-024-00631-3.
[21]
ZHANG D, ZHOU L, SHI Y, et al. Increased free water in the substantia nigra in asymptomatic LRRK2 G2019S mutation carriers[J]. Mov Disord, 2023, 38(1): 138-142. DOI: 10.1002/mds.29253.
[22]
ZHOU L, LI G, ZHANG Y, et al. Increased free water in the substantia nigra in idiopathic REM sleep behaviour disorder[J]. Brain, 2021, 144(5): 1488-1497. DOI: 10.1093/brain/awab039.
[23]
OFORI E, PASTERNAK O, PLANETTA P J, et al. Longitudinal changes in free-water within the substantia nigra of Parkinson's disease[J]. Brain, 2015, 138(Pt 8): 2322-2331. DOI: 10.1093/brain/awv136.
[24]
ZHOU G, REN J, RONG D, et al. Monitoring substantia nigra degeneration using free water imaging across prodromal and clinical Parkinson's disease[J]. Mov Disord, 2023, 38(5): 774-782. DOI: 10.1002/mds.29366.
[25]
SHAH A, PRASAD S, INDORIA A, et al. Free water imaging in Parkinson's disease and atypical Parkinsonian disorders[J]. J Neurol, 2024, 271(5): 2521-2528. DOI: 10.1007/s00415-024-12184-9.
[26]
GUTTUSO T, JR., SIRICA D, TOSUN D, et al. Thalamic dorsomedial nucleus free water correlates with cognitive decline in Parkinson's disease[J]. Mov Disord, 2022, 37(3): 490-501. DOI: 10.1002/mds.28886.
[27]
PASTERNAK O, SOCHEN N, GUR Y, et al. Free water elimination and mapping from diffusion MRI[J]. Magn Reson Med, 2009, 62(3): 717-730. DOI: 10.1002/mrm.22055.
[28]
MACMAHON COPAS A N, MCCOMISH S F, FLETCHER J M, et al. The pathogenesis of Parkinson's disease: A complex interplay between astrocytes, microglia, and T lymphocytes?[J/OL]. Front Neurol, 2021, 12: 666737 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/34122308/. DOI: 10.3389/fneur.2021.666737.
[29]
WANG Y, WANG Q, HALDAR J P, et al. Quantification of increased cellularity during inflammatory demyelination[J]. Brain, 2011, 134(Pt 12): 3590-3601. DOI: 10.1093/brain/awr307.
[30]
YANG J, ARCHER D B, BURCIU R G, et al. Multimodal dopaminergic and free-water imaging in Parkinson's disease[J]. Parkinsonism Relat Disord, 2019, 62: 10-15. DOI: 10.1016/j.parkreldis.2019.01.007.
[31]
MORRIS H R, SPILLANTINI M G, SUE C M, et al. The pathogenesis of Parkinson's disease[J]. Lancet, 2024, 403(10423): 293-304. DOI: 10.1016/s0140-6736(23)01478-2.
[32]
ANDICA C, KAMAGATA K, HATANO T, et al. Free-water imaging in white and gray matter in Parkinson's disease[J/OL]. Cells, 2019, 8(8): 839 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/31387313/. DOI: 10.3390/cells8080839.
[33]
FU Y, ZHOU L, LI H, et al. Adaptive structural changes in the motor cortex and white matter in Parkinson's disease[J]. Acta Neuropathol, 2022, 144(5): 861-879. DOI: 10.1007/s00401-022-02488-3.
[34]
GU H F, DAI H. Diagnostic value of texture analysis based on diffusion tensor imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 1-6. DOI: 10.12015/issn.1674-8034.2021.11.001.
[35]
OESTREICH L K L, LYALL A E, PASTERNAK O, et al. Characterizing white matter changes in chronic schizophrenia: A free-water imaging multi-site study[J]. Schizophr Res, 2017, 189: 153-161. DOI: 10.1016/j.schres.2017.02.006.
[36]
JIN C, QI S, TENG Y, et al. Integrating structural and functional interhemispheric brain connectivity of gait freezing in Parkinson's disease[J/OL]. Front Neurol, 2021, 12: 609866 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/33935931/. DOI: 10.3389/fneur.2021.609866.
[37]
PRAMSTALLER P P, MARSDEN C D. The basal ganglia and apraxia[J]. Brain, 1996, 119 (Pt 1): 319-340. DOI: 10.1093/brain/119.1.319.
[38]
VERVOORT G, LEUNISSEN I, FIRBANK M, et al. Structural brain alterations in motor subtypes of Parkinson's disease: Evidence from probabilistic tractography and shape analysis[J/OL]. PLoS One, 2016, 11(6): e0157743 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/27314952/. DOI: 10.1371/journal.pone.0157743.
[39]
WEN M C, HENG H S E, LU Z, et al. Differential white matter regional alterations in motor subtypes of early drug-naive Parkinson's disease patients[J]. Neurorehabil Neural Repair, 2018, 32(2): 129-141. DOI: 10.1177/1545968317753075.
[40]
GARCÍA-GOMAR M G, CONCHA L, SOTO-ABRAHAM J, et al. Long-term improvement of Parkinson disease motor symptoms derived from lesions of prelemniscal fiber tract components[J]. Oper Neurosurg (Hagerstown), 2020, 19(5): 539-550. DOI: 10.1093/ons/opaa186.
[41]
HAGHSHOMAR M, SHOBEIRI P, SEYEDI S A, et al. Cerebellar microstructural abnormalities in Parkinson's disease: a systematic review of diffusion tensor imaging studies[J]. Cerebellum, 2022, 21(4): 545-571. DOI: 10.1007/s12311-021-01355-3.
[42]
MARTINO J, DE WITT HAMER P C, BERGER M S, et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study[J]. Brain Struct Funct, 2013, 218(1): 105-121. DOI: 10.1007/s00429-012-0386-5.
[43]
HENDERSON F, ABDULLAH K G, VERMA R, et al. Tractography and the connectome in neurosurgical treatment of gliomas: the premise, the progress, and the potential[J/OL]. Neurosurg Focus, 2020, 48(2): E6 [2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/32006950/. DOI: 10.3171/2019.11.Focus19785.
[44]
CONNER A K, BRIGGS R G, RAHIMI M, et al. A connectomic atlas of the human cerebrum-chapter 10: Tractographic description of the superior longitudinal fasciculus[J]. Oper Neurosurg (Hagerstown), 2018, 15(suppl_1): S407-S422. DOI: 10.1093/ons/opy264.
[45]
WANG J, WEI M, CHENG O M. Advance of magnetic resonance imaging in Parkinson's disease subtypes[J]. Chin J Magn Reson Imaging, 2018, 9(11): 848-852. DOI: 10.12015/issn.1674-8034.2018.11.010.
[46]
LINORTNER P, MCDANIEL C, SHAHID M, et al. White matter hyperintensities related to Parkinson's disease executive function[J]. Mov Disord Clin Pract, 2020, 7(6): 629-638. DOI: 10.1002/mdc3.12956.
[47]
MARTINO J, DE LUCAS E M. Subcortical anatomy of the lateral association fascicles of the brain: A review[J]. Clin Anat, 2014, 27(4): 563-569. DOI: 10.1002/ca.22321.
[48]
HIRATA F C C, SATO J R, VIEIRA G, et al. Substantia nigra fractional anisotropy is not a diagnostic biomarker of Parkinson's disease: A diagnostic performance study and meta-analysis[J]. Eur Radiol, 2017, 27(6): 2640-2648. DOI: 10.1007/s00330-016-4611-0.

PREV Comparison of brain functional alterations in young adults with pre-diabetes and type 2 diabetes mellitus
NEXT A preliminary comparative study on the characteristics of resting-state brain functional networks in patients with comorbid insomnia in first-episode and recurrent depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn