Share:
Share this content in WeChat
X
Clinical Article
Feasibility study of cardiac magnetic resonance four-dimensional flow imaging to evaluate early left ventricular diastolic dysfunction in patients with hypertensive heart disease
MU Yu  MA Liyuan  ZHENG Yan  WANG Pei  LI Wenling  SUN Xiao  ZHU Li 

Cite this article as: MU Y, MA L Y, ZHENG Y, et al. Feasibility study of cardiac magnetic resonance four-dimensional flow imaging to evaluate early left ventricular diastolic dysfunction in patients with hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2025, 16(1): 111-117. DOI:10.12015/issn.1674-8034.2025.01.017.


[Abstract] Objective To apply the cardiac magnetic resonance (CMR) four-dimensional flow (4D Flow) technique to measure blood flow in the left ventricle of patients with hypertensive heart disease (HHD) and to investigate the feasibility of using left ventricular hemodynamic parameters for the early diagnosis of left ventricular diastolic dysfunction.Materials and Methods Fifty-four HHD patients were prospectively enrolled. According to the left ventricular ejection fraction (LVEF), they were divided into 34 patients in the HHD LVEF reduced group (LVEF < 50%) and 20 patients in the HHD LVEF preserved group (LVEF ≥ 50%). At the same time, 40 healthy volunteers were enrolled as the control group. All three groups were scanned with a 3.0 T magnetic resonance steady-state free-flow sequence and CMR 4D Flow sequence. CVI42 software was used for image post-processing analysis, including left ventricular function parameters, early diastolic mitral flow velocity (E peak), and late diastolic mitral flow velocity (A peak). One-way analysis of variance (ANOVA) or Kruskal-Wallis test was performed to compare the clinical data and imaging parameters among the three groups. Pearson correlation analysis was conducted to examine the relationship between the mitral peak velocity ratio (E/A) and the left ventricular end-diastolic volume index (LVEDVI), left ventricular end-systolic volume index (LVESVI), amd LVEF.Results The mitral E peak and E/A were lower in the HHD LVEF preserved group and HHD LVEF reduced group than in the control group [HHD LVEF preserved group vs. HHD LVEF reduced group vs. healthy control group: E peak, 60.10 (46.25, 83.45) cm/s vs. 61.50 (51.80, 92.50) cm/s vs. 91.42 (88.06, 98.74) cm/s; E/A, (1.15 ± 0.36) vs. (1.00 ± 0.35) vs. (1.78 ± 0.22)] (P < 0.05). The A peak was higher than that of the control group [HHD LVEF preserved group vs. HHD LVEF reduced group vs. healthy control group: 59.45 (54.10, 76.65) cm/s vs. 68.85 (53.10, 94.20) cm/s vs. 53.37 (49.06, 56.40) cm/s] (P < 0.05). Analysis showed a negative correlation between E/A and both LVEDVI (r = -0.306, P = 0.024) and LVESVI (r = -0.357, P = 0.008), whereas a positive correlation was observed between E/A and LVEF (r = 0.353, P = 0.009).Conclusions Left ventricular diastolic function can be quantitatively assessed in patients with HHD using the CMR 4D Flow technique. Early changes in diastolic function can be detected even when left ventricular systolic function remains unaltered, which demonstrates significant potential for application in the early diagnosis of HHD.
[Keywords] hypertensive heart disease;four-dimensional blood flow;left ventricular diastolic function;cardiac magnetic resonance;magnetic resonance imaging

MU Yu1   MA Liyuan2   ZHENG Yan2   WANG Pei2   LI Wenling2   SUN Xiao2   ZHU Li2*  

1 School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China

2 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

Corresponding author: ZHU L, E-mail: zhuli72@nyfy.com.cn

Conflicts of interest   None.

Received  2024-10-11
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.017
Cite this article as: MU Y, MA L Y, ZHENG Y, et al. Feasibility study of cardiac magnetic resonance four-dimensional flow imaging to evaluate early left ventricular diastolic dysfunction in patients with hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2025, 16(1): 111-117. DOI:10.12015/issn.1674-8034.2025.01.017.

[1]
YANG Z X, ZHOU N, XIA L M. The research progress of cardiac magnetic resonance to assess hypertensive heart disease[J]. Chin J Magn Reson Imag, 2020, 11(5): 377-381. DOI: 10.12015/issn.1674-8034.2020.05.014.
[2]
GUO H X, LI J L, LI X J. Application of echocardiography in the evaluation of left ventricular function in patients with hypertensive heart disease[J]. Clin Med Eng, 2021, 28(9): 1149-1150. DOI: 10.3969/j.issn.1674-4659.2021.09.1149.
[3]
DÍEZ J, GONZÁLEZ A, LÓPEZ B, et al. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease[J]. Nat Clin Pract Cardiovasc Med, 2005, 2(4): 209-216. DOI: 10.1038/ncpcardio0158.
[4]
CHACKO B R, KARUR G R, CONNELLY K A, et al. Left ventricular structure and diastolic function by cardiac magnetic resonance imaging in hypertrophic cardiomyopathy[J]. Indian Heart J, 2018, 70(1): 75-81. DOI: 10.1016/j.ihj.2016.12.021.
[5]
PAVLOPOULOS H, GRAPSA J, STEFANADI E, et al. The evolution of diastolic dysfunction in the hypertensive disease[J]. Eur J Echocardiogr, 2008, 9(6): 772-778. DOI: 10.1093/ejechocard/jen145.
[6]
NGUYEN J, WEBER J, HSU B, et al. Comparing left atrial indices by CMR in association with left ventricular diastolic dysfunction and adverse clinical outcomes[J/OL]. Sci Rep, 2021, 11: 21331 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34716361/. DOI: 10.1038/s41598-021-00596-w.
[7]
YANCY C W, JESSUP M, BOZKURT B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J/OL]. J Am Coll Cardiol, 2013, 62(16): e147-239 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/23747642/. DOI: 10.1016/j.jacc.2013.05.019.
[8]
ROTHENBERGER S M, PATEL N M, ZHANG J C, et al. Automatic 4D flow MRI segmentation using the standardized difference of means velocity[J]. IEEE Trans Med Imaging, 2023, 42(8): 2360-2373. DOI: 10.1109/TMI.2023.3251734.
[9]
KAMPHUIS V P, ROEST A A W, AJMONE MARSAN N, et al. Automated cardiac valve tracking for flow quantification with four-dimensional flow MRI[J]. Radiology, 2019, 290(1): 70-78. DOI: 10.1148/radiol.2018180807.
[10]
PENG K, ZHANG X L, HUA T, et al. Evaluation of left ventricular blood flow kinetic energy in patients with hypertension by four-dimensional flow cardiovascular magnetic resonance imaging: a preliminary study[J]. Eur Radiol, 2023, 33(7): 4676-4687. DOI: 10.1007/s00330-023-09449-8.
[11]
TUNEDAL K, VIOLA F, GARCIA B C, et al. Haemodynamic effects of hypertension and type 2 diabetes: Insights from a 4D flow MRI-based personalized cardiovascular mathematical model[J]. J Physiol, 2023, 601(17): 3765-3787. DOI: 10.1113/JP284652.
[12]
Writing Group of Chinese Guidelines for the Management of Hypertension, Chinese Hypertension League, Hypertension Branch of China International Exchange and Promotive Association for Medical and Health Care, et al. Guidelines for prevention and treatment of hypertension in China (revised in 2024)[J]. Chin J Hypertens, 2024, 32(7): 603-700. DOI: 10.16439/j.issn.1673-7245.2024.07.002.
[13]
Chinese Society of Cardiology, Chinese Medical Association, Chinese College of Cardiovascular Physician, Chinese Heart Failure Association of Chinese Medical Doctor Association, et al. Chinese guidelines for the diagnosis and treatment of heart failure 2024 [J]. Chin J Cardiol. 2024 Mar 24; 52(3):235-275. DOI: 10.3760/cma.j.cn112148-20231101-00405. DOI: .
[14]
Echocardiography Group of Chinese Medical Association of Ultrasound Medicine, Professional Committee of Echocardiography of Cardiovascular Branch of Chinese Medical Doctor Association. Guidelines for clinical application of echocardiography in evaluating cardiac systolic and diastolic function[J]. Chin J Ultrason, 2020, 29(6): 461-477. DOI: 10.3760/cma.j.cn131148-20200227-00115.
[15]
HU J, YANG S L. Research status of evaluation of cardiac diastolic function by ultrasonography[J]. J Mol Imag, 2020, 43(4): 593-596. DOI: 10.12122/j.issn.1674-4500.2020.04.08.
[16]
ABRAHAM T P, DIMAANO V L, LIANG H Y. Role of tissue Doppler and strain echocardiography in current clinical practice[J]. Circulation, 2007, 116(22): 2597-2609. DOI: 10.1161/CIRCULATIONAHA.106.647172.
[17]
MAVROGENI S, KATSI V, VARTELA V, et al. The emerging role of Cardiovascular Magnetic Resonance in the evaluation of hypertensive heart disease[J/OL]. BMC Cardiovasc Disord, 2017, 17(1): 132 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/28535761/. DOI: 10.1186/s12872-017-0556-8.
[18]
SOULAT G, MCCARTHY P, MARKL M. 4D flow with MRI[J/OL]. Annu Rev Biomed Eng, 2020, 22: 103-126 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/32155346/. DOI: 10.1146/annurev-bioeng-100219-110055.
[19]
CERNE J W, PATHROSE A, GORDON D Z, et al. Evaluation of pulmonary hypertension using 4D flow MRI[J]. J Magn Reson Imaging, 2022, 56(1): 234-245. DOI: 10.1002/jmri.27967.
[20]
MA L R, GUO J X, LI W L, et al. Reliability of 4D flow cardiac MRI for measuring hemodynamic parameters of left ventricle[J]. Chin J Med Imag Technol, 2024, 40(2): 221-225. DOI: 10.13929/j.issn.1003-3289.2024.02.014.
[21]
BISSELL M M, RAIMONDI F, ALI L A, et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 40 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/37474977/. DOI: 10.1186/s12968-023-00942-z.
[22]
CHOWDHARY A, GARG P, DAS A, et al. Cardiovascular magnetic resonance imaging: emerging techniques and applications[J]. Heart, 2021, 107(9): 697-704. DOI: 10.1136/heartjnl-2019-315669.
[23]
SECINARO A, AIT-ALI L, CURIONE D, et al. Recommendations for cardiovascular magnetic resonance and computed tomography in congenital heart disease: a consensus paper from the CMR/CCT working group of the Italian Society of Pediatric Cardiology (SICP) and the Italian College of Cardiac Radiology endorsed by the Italian Society of Medical and Interventional Radiology (SIRM) Part I[J]. Radiol Med, 2022, 127(7): 788-802. DOI: 10.1007/s11547-022-01490-9.
[24]
JIA X, ZHAO S H. 4D Flow cardiovascular magnetic resonance consensus statement of SCMR: 2023 update[J]. Chin J Magn Reson Imag, 2024, 15(3): 1-6. DOI: 10.12015/issn.1674-8034.2024.03.001.
[25]
RIZK J. 4D flow MRI applications in congenital heart disease[J]. Eur Radiol, 2021, 31(2): 1160-1174. DOI: 10.1007/s00330-020-07210-z.
[26]
LIU Y H, LI W, LIANG W Y, et al. Feasibility study of cardiac magnetic resonance four-dimensional flow imaging in evaluating left ventricular diastolic function in patients with hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imag, 2022, 13(10): 127-131. DOI: 10.12015/issn.1674-8034.2022.10.019.
[27]
JING H R, XIE R S, BAI Y, et al. The mechanism actions of astragaloside IV prevents the progression of hypertensive heart disease based on network pharmacology and experimental pharmacology[J/OL]. Front Pharmacol, 2021, 12: 755653 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34803698/. DOI: 10.3389/fphar.2021.755653.
[28]
HABEL N, INFELD M, BERNKNOPF J, et al. Rationale and design of the PACE HFpEF trial: physiologic accelerated pacing as a holistic treatment of heart failure with preserved ejection fraction[J]. Heart Rhythm O2, 2023, 5(1): 41-49. DOI: 10.1016/j.hroo.2023.12.001.
[29]
SHUI Z Y, WANG Y Z, SUN M X, et al. The effect of coronary slow flow on left atrial structure and function[J/OL]. Sci Rep, 2021, 11(1): 7511 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/33820937/. DOI: 10.1038/s41598-021-87193-z.
[30]
CHENG Y, YAN M C, HE S Y, et al. Baicalin alleviates angiotensin II-induced cardiomyocyte apoptosis and autophagy and modulates the AMPK/mTOR pathway[J/OL]. J Cell Mol Med, 2024, 28(9): e18321 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38712979/. DOI: 10.1111/jcmm.18321.
[31]
DAI H J, BRAGAZZI N L, YOUNIS A, et al. Worldwide trends in prevalence, mortality, and disability-adjusted life years for hypertensive heart disease from 1990 to 2017[J]. Hypertension, 2021, 77(4): 1223-1233. DOI: 10.1161/HYPERTENSIONAHA.120.16483.
[32]
ZDRAVKOVIC M, KLASNJA S, POPOVIC M, et al. Cardiac magnetic resonance in hypertensive heart disease: time for a new chapter[J/OL]. Diagnostics, 2022, 13(1): 137 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/36611429/. DOI: 10.3390/diagnostics13010137.
[33]
YE X Q, CAO Y, HU Z S, et al. Evaluation of left ventricular function in elderly patients with hypertensive heart disease by two-dimensional speckle tracking ultrasound[J]. Chin J Gerontol, 2021, 41(8):1569-1572. DOI: 10.3969/j.issn.1005-9202.2021.08.001.
[34]
LENIHAN D J, GERSON M C, HOIT B D, et al. Mechanisms, diagnosis, and treatment of diastolic heart failure[J]. Am Heart J, 1995, 130(1): 153-166. DOI: 10.1016/0002-8703(95)90251-1.
[35]
CREA F. The ESC Guidelines on heart failure, sacubitril-valsartan in resistant hypertension, and new therapeutic targets in myocardial hypertrophy[J]. Eur Heart J, 2021, 42(36): 3581-3585. DOI: 10.1093/eurheartj/ehab627.
[36]
FANG Q H, WANG J, WEI J J, et al. Transcriptomic profile analysis of the left atrium in spontaneously hypertensive rats in the early stage[J/OL]. Front Pharmacol, 2022, 13: 989636 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/36324689/. DOI: 10.3389/fphar.2022.989636.
[37]
FRYDAS A, MORRIS D A, BELYAVSKIY E, et al. Left atrial strain as sensitive marker of left ventricular diastolic dysfunction in heart failure[J]. ESC Heart Fail, 2020, 7(4): 1956-1965. DOI: 10.1002/ehf2.12820.
[38]
SHEN Q H, HIEBERT J B, RAHMAN F K, et al. Understanding obesity-related high output heart failure and its implications[J]. Int J Heart Fail, 2021, 3(3): 160-171. DOI: 10.36628/ijhf.2020.0047.

PREV Analysis of brain MRI abnormalities in infantile spasms treated with vigabatrin
NEXT Development and external validation of an XGBoost model for differentiating the benign and malignant nature of non-mass breast lesions
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn