Share:
Share this content in WeChat
X
Clinical Article
The value of CT and MRI features of pancreatic neuroendocrine neoplasm in predicting the pathological grade
WANG Xijiang  GUO Wei  LIU Jianyu 

Cite this article as: WANG X J, GUO W, LIU J Y. The value of CT and MRI features of pancreatic neuroendocrine neoplasm in predicting the pathological grade[J]. Chin J Magn Reson Imaging, 2025, 16(1): 127-134. DOI:10.12015/issn.1674-8034.2025.01.019.


[Abstract] Objective To investigate the value of CT and MRI features of pancreatic neuroendocrine neoplasm (panNEN) in predicting its pathological grade.Materials and Methods The clinical and imaging data of 106 patients with panNEN in the Third Hospital of Peking University were analyzed retrospectively. According to the World Health Organization (WHO) classification and classification standard of 2019, the patients were divided into low-grade group [neuroendocrine neoplasm (NEN) of G1 grade] and middle-high-grade group [NEN of G2, G3 grade and neuroendocrine carcinoma (NEC)]. Sex, age, tumor shape, tumor location, tumor volume, cystic and solid nature, CT and MRI signal characteristics, vascular invasion and hepatic metastasis were analyzed. t test, Mann-whitney U test, chi-square test and Wilcoxon rank-sum test were used to analyze the data, and binary logistic regression was used to construct the prediction model.Results There were significant differences in tumor volume, hepatic metastasis and vascular invasion between low-grade group and middle-high-grade group, but no significant differences in sex, age, cystic nature and location. On CT and MRI, only diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) images showed significant differences in signal characteristics. Multivariate logistic regression analysis showed that tumor volume, hepatic metastasis and vascular invasion were independent predictors of panNEN pathological grade, the combined model predicted the AUC of the high-grade group in panNEN to be 0.861 (95% CI: 0.798 to 0.923), with a sensitivity of 78.1% and a specificity of 83.3%.Conclusions The combined model based on tumor volume, hepatic metastasis and vascular invasion can effectively predict panNEN pathological grade before operation and is helpful for clinical treatment decision.
[Keywords] pancreas;neuroendocrine neoplasm;magnetic resonance imaging;tomography, X-ray computed;pathological grade

WANG Xijiang1   GUO Wei2   LIU Jianyu2*  

1 Department of Radiology, the Second People's Hospital of Jinzhong, Jinzhong 030800, China

2 Department of Radiology, Peking University Third Hospital, Beijing 100191, China

Corresponding author: LIU J Y, E-mail: jyliubysy@163.com

Conflicts of interest   None.

Received  2024-06-21
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.019
Cite this article as: WANG X J, GUO W, LIU J Y. The value of CT and MRI features of pancreatic neuroendocrine neoplasm in predicting the pathological grade[J]. Chin J Magn Reson Imaging, 2025, 16(1): 127-134. DOI:10.12015/issn.1674-8034.2025.01.019.

[1]
KHANNA L, PRASAD S R, SUNNAPWAR A, et al. Pancreatic neuroendocrine neoplasms: 2020 update on pathologic and imaging findings and classification[J]. Radiographics, 2020, 40(5): 1240-1262. DOI: 10.1148/rg.2020200025.
[2]
HOFLAND J, FALCONI M, CHRIST E, et al. European Neuroendocrine Tumor Society 2023 guidance paper for functioning pancreatic neuroendocrine tumour syndromes[J/OL]. J Neuroendocrinol, 2023, 35(8): e13318 [2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/37578384. DOI: 10.1111/jne.13318.
[3]
MATROOD S, MELMS L E, BARTSCH D K, et al. The expression of autophagy-associated genes represents a valid footprint for aggressive pancreatic neuroendocrine neoplasms[J/OL]. Int J Mol Sci, 2023, 24(4): 3636 [2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/36835048/. DOI: 10.3390/ijms24043636.
[4]
FORSYTHE S D, PU T, ANDREWS S G, et al. Models in pancreatic neuroendocrine neoplasms: current perspectives and future directions[J/OL]. Cancers, 2023, 15(15): 3756 [2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/36835048/. DOI: 10.3390/cancers15153756.
[5]
NAGTEGAAL I D, ODZE R D, KLIMSTRA D, et al. The 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76(2): 182-188. DOI: 10.1111/his.13975.
[6]
FAN J H, ZHANG Y Q, SHI S S, et al. A nation-wide retrospective epidemiological study of gastroenteropancreatic neuroendocrine neoplasms in China[J]. Oncotarget, 2017, 8(42): 71699-71708. DOI: 10.18632/oncotarget.17599.
[7]
HALLET J, LAW C H L, CUKIER M, et al. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes[J]. Cancer, 2015, 121(4): 589-597. DOI: 10.1002/cncr.29099.
[8]
DAS S, DASARI A. Epidemiology, incidence, and prevalence of neuroendocrine neoplasms: are there global differences?[J/OL]. Curr Oncol Rep, 2021, 23(4): 43 [2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/33719003/. DOI: 10.1007/s11912-021-01029-7.
[9]
LU F Y, YE M J, HU C H, et al. FABP5 regulates lipid metabolism to facilitate pancreatic neuroendocrine neoplasms progression via FASN mediated Wnt/β-catenin pathway[J]. Cancer Sci, 2023, 114(9): 3553-3567. DOI: 10.1111/cas.15883.
[10]
PTASNUKA M, TRUSKOVS A, OZOLINS A, et al. Sporadic pancreatic neuroendocrine neoplasms: a retrospective clinicopathological and outcome analysis from a Latvian study group[J/OL]. Front Surg, 2023, 10: 1131333 [2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/37021091/. DOI: 10.3389/fsurg.2023.1131333.
[11]
WIESE D, HUMBURG F G, KANN P H, et al. Changes in diagnosis and operative treatment of insulinoma over two decades[J/OL]. Langenbecks Arch Surg, 2023, 408(1): 255 [2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/37386194/. DOI: 10.1007/s00423-023-02974-6.
[12]
TOSHIMA F, INOUE D, KOMORI T, et al. Is the combination of MR and CT findings useful in determining the tumor grade of pancreatic neuroendocrine tumors?[J]. Jpn J Radiol, 2017, 35(5): 242-253. DOI: 10.1007/s11604-017-0627-x.
[13]
ZIOGAS I A, SCHMITZ R, MORIS D, et al. The role of surgery for pancreatic neuroendocrine tumors[J]. Anticancer Res, 2022, 42(2): 629-639. DOI: 10.21873/anticanres.15520.
[14]
SCOTT A T, HOWE J R. Evaluation and management of neuroendocrine tumors of the pancreas[J]. Surg Clin North Am, 2019, 99(4): 793-814. DOI: 10.1016/j.suc.2019.04.014.
[15]
LI B Q, YUAN C H. Controversies and prospects for surgical treatment of pancreatic neuroendocrine neoplasms with liver metastases[J]. Chin J Surg, 2023, 61(10): 839-844. DOI: 10.3760/cma.j.cn112139-20230319-00114.
[16]
ZHAO L H, ZHANG D, MU J, et al. Value of predictive liver metastasis in pancreatic neuroendocrine neoplasms based on ultrasonographic radiomics[J]. Chin J Ultrason, 2023, 32(8): 685-691. DOI: 10.3760/cma.j.cn131148-20230206-00060.
[17]
SINGHI A D, KLIMSTRA D S. Well-differentiated pancreatic neuroendocrine tumours (PanNETs) and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs): concepts, issues and a practical diagnostic approach to high-grade (G3) cases[J]. Histopathology, 2018, 72(1): 168-177. DOI: 10.1111/his.13408.
[18]
ITO T, HIJIOKA S, MASUI T, et al. Advances in the diagnosis and treatment of pancreatic neuroendocrine neoplasms in Japan[J]. J Gastroenterol, 2017, 52(1): 9-18. DOI: 10.1007/s00535-016-1250-9.
[19]
HORIGUCHI S, KATO H, SHIRAHA H, et al. Dynamic computed tomography is useful for prediction of pathological grade in pancreatic neuroendocrine neoplasm[J]. J Gastroenterol Hepatol, 2017, 32(4): 925-931. DOI: 10.1111/jgh.13594.
[20]
RIMBAŞ M, RIZZATTI G, TOSONI A, et al. Small nonfunctional pancreatic neuroendocrine neoplasms: Time for a step-up treatment approach?[J]. Endosc Ultrasound, 2023, 12(1): 1-7. DOI: 10.4103/EUS-D-22-00028.
[21]
TAKUMI K, FUKUKURA Y, HIGASHI M, et al. Pancreatic neuroendocrine tumors: Correlation between the contrast-enhanced computed tomography features and the pathological tumor grade[J]. Eur J Radiol, 2015, 84(8): 1436-1443. DOI: 10.1016/j.ejrad.2015.05.005.
[22]
MA J, WANG X Y, TANG M S, et al. Preoperative prediction of pancreatic neuroendocrine tumor grade based on 68Ga-DOTATATE PET/CT[J]. Endocrine, 2024, 83(2): 502-510. DOI: 10.1007/s12020-023-03515-3.
[23]
TAKADA S, KATO H, SARAGAI Y, et al. Contrast-enhanced harmonic endoscopic ultrasound using time-intensity curve analysis predicts pathological grade of pancreatic neuroendocrine neoplasm[J]. J Med Ultrason, 2019, 46(4): 449-458. DOI: 10.1007/s10396-019-00967-x.
[24]
WANG Y, CHEN Z E, YAGHMAI V, et al. Diffusion-weighted MR imaging in pancreatic endocrine tumors correlated with histopathologic characteristics[J]. J Magn Reson Imaging, 2011, 33(5): 1071-1079. DOI: 10.1002/jmri.22541.
[25]
BIAN Y, LI J, CAO K, et al. Magnetic resonance imaging radiomic analysis can preoperatively predict G1 and G2/3 grades in patients with NF-pNETs[J]. Abdom Radiol, 2021, 46(2): 667-680. DOI: 10.1007/s00261-020-02706-0.
[26]
HAN B Z, JI Y, ZENG M S, et al. Predictive value of enhanced computed tomography in preoperative pathological grading of pancreatic neuroendocrine neoplasm[J]. Chin J Dig, 2021, 41(9): 613-618. DOI: 10.3760/cma.j.cn311367-20210320-00162.
[27]
LIU L M, TANG Y H, WANG H Y, et al. CT imaging features of different histological grades of pancreatic neuroendocrine tumors[J]. Chin J Radiol, 2016, 50(2): 105-109. DOI: 10.3760/cma.j.issn.1005-1201.2016.02.006.
[28]
PROCACCI C, CARBOGNIN G, ACCORDINI S, et al. Nonfunctioning endocrine tumors of the pancreas: possibilities of spiral CT characterization[J]. Eur Radiol, 2001, 11(7): 1175-1183. DOI: 10.1007/s003300000714.
[29]
LIANG W J, YANG P F, HUANG R, et al. A combined nomogram model to preoperatively predict histologic grade in pancreatic neuroendocrine tumors[J]. Clin Cancer Res, 2019, 25(2): 584-594. DOI: 10.1158/1078-0432.CCR-18-1305.
[30]
LUO Y J, CHEN X, CHEN J, et al. Preoperative prediction of pancreatic neuroendocrine neoplasms grading based on enhanced computed tomography imaging: validation of deep learning with a convolutional neural network[J]. Neuroendocrinology, 2020, 110(5): 338-350. DOI: 10.1159/000503291.
[31]
UTSUMI M, UMEDA Y, TAKAGI K, et al. Correlation of computed tomography imaging features and pathological features of 41 patients with pancreatic neuroendocrine tumors[J]. Hepatogastroenterology, 2015, 62(138): 441-446.
[32]
BUETOW P C, PARRINO T V, BUCK J L, et al. Islet cell tumors of the pancreas: pathologic-imaging correlation among size, necrosis and cysts, calcification, malignant behavior, and functional status[J]. AJR Am J Roentgenol, 1995, 165(5): 1175-1179. DOI: 10.2214/ajr.165.5.7572498.
[33]
BETTINI R, PARTELLI S, BONINSEGNA L, et al. Tumor size correlates with malignancy in nonfunctioning pancreatic endocrine tumor[J]. Surgery, 2011, 150(1): 75-82. DOI: 10.1016/j.surg.2011.02.022.
[34]
SUNDIN A, ARNOLD R, BAUDIN E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine & hybrid imaging[J]. Neuroendocrinology, 2017, 105(3): 212-244. DOI: 10.1159/000471879.
[35]
LUO Y J, DONG Z, CHEN J, et al. Pancreatic neuroendocrine tumours: correlation between MSCT features and pathological classification[J]. Eur Radiol, 2014, 24(11): 2945-2952. DOI: 10.1007/s00330-014-3317-4.
[36]
GU D S, HU Y B, DING H, et al. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study[J]. Eur Radiol, 2019, 29(12): 6880-6890. DOI: 10.1007/s00330-019-06176-x.
[37]
BIAN Y, JIANG H, MA C, et al. CT-based radiomics score for distinguishing between grade 1 and grade 2 nonfunctioning pancreatic neuroendocrine tumors[J]. AJR Am J Roentgenol, 2020, 215(4): 852-863. DOI: 10.2214/AJR.19.22123.

PREV Development and external validation of an XGBoost model for differentiating the benign and malignant nature of non-mass breast lesions
NEXT Value of enhanced T2 star-weighted angiography in the differential diagnosis between benign and malignant renal tumors with T2WI hypo-intensity
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn