Share:
Share this content in WeChat
X
Clinical Article
The application value of magnetic resonance image complication sequence combined with ultra-high b-value diffusion-weighted imaging in the diagnosis of parametrial infiltration in cervical cancer
CHEN Tingting  CHEN Zhijian  ZHANG Li  CHEN Minlan  PENG Xiaolan  SU Yusheng 

Cite this article as: CHEN T T, CHEN Z J, ZHANG L, et al. The application value of magnetic resonance image complication sequence combined with ultra-high b-value diffusion-weighted imaging in the diagnosis of parametrial infiltration in cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 140-145. DOI:10.12015/issn.1674-8034.2025.01.021.


[Abstract] Objective To explore the diagnostic value of magnetic resonance image complication (MAGiC) sequence combined with ultra-high b-value diffusion weighted imaging (uh-DWI) in parametrial infiltration of cervical cancer.Materials and Methods Prospectively analyzed 40 patients with surgically and pathologically proven cervical cancer from Ningde Normal University Affiliated Ningde Municipal Hospital from August 2022 to April 2024. Patients were divided into two groups based on pathological results: parametrial infiltration negative group and positive group. Both groups underwent MAGiC and ultra-high b-value DWI (uh-DWI), and tumor longitudinal relaxation values (T1), transverse relaxation values (T2), proton density (PD) values, and ultra-high b-value apparent diffusion coefficients (ADCuh) were measured. To make comparisons, the Mann-Whitney U test was utilized to assess the parameter values between the negative and positive groups. We applied the receiver operating characteristic (ROC) curve to evaluate the diagnostic efficacy of cervical cancer parametrial infiltration for each parameter and the combination of parameters with differences.Results Among the 40 cervical cancer patients, there were 35 instances of squamous cell carcinoma and 5 instances of adenocarcinoma; 28cases in the negative group and 12 cases in the positive group. The T1 and T2 values in the positive group were lower than those in the negative group, with a statistically significant difference (P < 0.01). There was no significant difference in PD values between the two groups (P = 0.141). The positive group's ADCuh value was lower than that of the negative group (P < 0.001). The area under the curve (AUC) for T1, T2, and ADCuh to distinguish cervical cancer parametrial invasion were 0.899 (95% CI: 0.762 to 0.972), 0.962 (95% CI: 0.849 to 0.997), 0.934 (95% CI: 0.809 to 0.988), respectively, with sensitivities and specificities of 86.36%, 77.80%, 100.00%, 77.78%, and 77.27%, 94.44%, respectively. The AUC for the combined differentiation of parametrial infiltration could be increased to 0.985, with a sensitivity of 100.00% and a specificity of 95.40%.Conclusions The combination of MAGiC and ultra-high b-value DWI is helpful in judging parametrial infiltration of cervical cancer. The comprehensive use of the advantages of multi-parametric MRI and the combination of parameters with differences can obtain good diagnostic efficacy for parametrial invasion.
[Keywords] cervical cancer;parametrial infiltration;magnetic resonance image complication;ultra-high b-value diffusion-weighted imaging;multi-parametric combination;magnetic resonance imaging

CHEN Tingting1   CHEN Zhijian1   ZHANG Li1   CHEN Minlan1   PENG Xiaolan1*   SU Yusheng2  

1 Department of Radiology, Ningde Normal University Affiliated Ningde Municipal Hospital, Ningde 352100, China

2 Ningde Normal University Medicine College, Ningde 352100, China

Corresponding author: PENG X L, E-mail: 76432007@qq.com

Conflicts of interest   None.

Received  2024-05-30
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.021
Cite this article as: CHEN T T, CHEN Z J, ZHANG L, et al. The application value of magnetic resonance image complication sequence combined with ultra-high b-value diffusion-weighted imaging in the diagnosis of parametrial infiltration in cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 140-145. DOI:10.12015/issn.1674-8034.2025.01.021.

[1]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[2]
XU M, HE Y S, QI X, et al. The diagnostic value and correlation study between ADC and quantitative parameter of DCE-MRI in the parametrial in-vasion of cervical cancer[J]. Chin J Med Imag, 2022, 32(3): 480-483.
[3]
MARJASUO S, KOSKENVUO L, LEPISTÖ A. Findings in magnetic resonance imaging for restaging locally advanced rectal cancer[J/OL]. Int J Colorectal Dis, 2024, 39(1): 23 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38289485/. DOI: 10.1007/s00384-024-04595-x.
[4]
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359. DOI: 10.6004/jnccn.2021.0012.
[5]
GARCIA-REYES K, PASSONI N M, PALMERI M L, et al. Detection of prostate cancer with multiparametric MRI (mpMRI): effect of dedicated reader education on accuracy and confidence of index and anterior cancer diagnosis[J]. Abdom Imag, 2015, 40(1): 134-142. DOI: 10.1007/s00261-014-0197-7.
[6]
ZHU L H, LIU H, ZHOU J J. Research progress of magnetic resonance T2-mapping in body malignant tumors[J]. Chin J Magn Reson Imag, 2020, 11(5): 398-400. DOI: 10.12015/issn.1674-8034.2020.05.019.
[7]
LIU L, YIN B, GENG D Y, et al. Changes of T2 relaxation time from neoadjuvant chemotherapy in breast cancer lesions[J/OL]. Iran J Radiol, 2016, 13(3): e24014 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/27853488/. DOI: 10.5812/iranjradiol.24014.
[8]
HAGIWARA A, WARNTJES M, HORI M, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365.
[9]
LIN L Y, GU Y J. MRI quantitative analysis technology: an important tool for the precise diagnosis and treatment of breast cancer[J]. Chin J Magn Reson Imag, 2024, 15(1): 1-5, 27. DOI: 10.12015/issn.1674-8034.2024.01.001.
[10]
WANG Y, TADIMALLA S, RAI R, et al. Quantitative MRI: Defining repeatability, reproducibility and accuracy for prostate cancer imaging biomarker development[J]. Magn Reson Imaging, 2021, 77: 169-179. DOI: 10.1016/j.mri.2020.12.018.
[11]
HAGIWARA A, HORI M, COHEN-ADAD J, et al. Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls[J]. Invest Radiol, 2019, 54(1): 39-47. DOI: 10.1097/RLI.0000000000000510.
[12]
LIU Y W, NIU H J, YIN H X, et al. A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods[J]. Chin J Magn Reson Imag, 2022, 13(4): 89-93. DOI: 10.12015/issn.1674-8034.2022.04.016.
[13]
ANDRÉ J, BARRIT S, JISSENDI P. Synthetic MRI for stroke: a qualitative and quantitative pilot study[J/OL]. Sci Rep, 2022, 12(1): 11552 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/35798771. DOI: 10.1038/s41598-022-15204-8/.
[14]
ANDICA C, HAGIWARA A, HORI M, et al. Review of synthetic MRI in pediatric brains: basic principle of MR quantification, its features, clinical applications, and limitations[J]. J Neuroradiol, 2019, 46(4): 268-275. DOI: 10.1016/j.neurad.2019.02.005.
[15]
COBAN G, PARLAK S, GUMELER E, et al. Synthetic MRI in neurofibromatosis type 1[J]. AJNR Am J Neuroradiol, 2021, 42(9): 1709-1715. DOI: 10.3174/ajnr.A7214.
[16]
CAO J B, XU X H, ZHU J Y, et al. Rapid quantification of global brain volumetry and relaxometry in patients with multiple sclerosis using synthetic magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(6): 3104-3114. DOI: 10.21037/qims-21-970.
[17]
FUJIOKA T, MORI M, OYAMA J, et al. Investigating the image quality and utility of synthetic MRI in the breast[J]. Magn Reson Med Sci, 2021, 20(4): 431-438. DOI: 10.2463/mrms.mp.2020-0132.
[18]
YANG X, LU Z, TAN X Y, et al. Evaluating the added value of synthetic magnetic resonance imaging in predicting sentinel lymph node status in breast cancer[J]. Quant Imaging Med Surg, 2024, 14(6): 3789-3802. DOI: 10.21037/qims-24-1.
[19]
MENG T B, LIU H M, ZHANG W J, et al. Quantification of relaxation time by synthetic MRI in diagnosis of prostate cancer[J]. J Clin Radiol, 2020, 39(3): 605-608. DOI: 10.13437/j.cnki.jcr.2020.03.040.
[20]
ARITA Y, TAKAHARA T, YOSHIDA S, et al. Quantitative assessment of bone metastasis in prostate cancer using synthetic magnetic resonance imaging[J]. Invest Radiol, 2019, 54(10): 638-644. DOI: 10.1097/RLI.0000000000000579.
[21]
LIU J. Study on quantitative magnetic resonance imaging in diagnosis and recurrence prediction of cervical cancer[D]. Zhengzhou: Zhengzhou University, 2022. DOI: 10.27466/d.cnki.gzzdu.2022.000045.
[22]
TANG Q, ZHOU Q Q, CHEN W, et al. A feasibility study of reduced full-of-view synthetic high-b-value diffusion-weighted imaging in uterine tumors[J/OL]. Insights Imaging, 2023, 14(1): 12 [2024-06-30]. https://doi.org/10.1186/s13244-022-01350-0. DOI: 10.1186/s13244-022-01350-0.
[23]
ARITA Y, WOO S, KWEE T C, et al. Pictorial review of multiparametric MRI in bladder urothelial carcinoma with variant histology: pearls and pitfalls[J]. Abdom Radiol, 2024, 49(8): 2797-2811. DOI: 10.1007/s00261-024-04397-3.
[24]
TAVAKOLI A A, HIELSCHER T, BADURA P, et al. Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer[J]. Radiology, 2023, 306(1): 186-199. DOI: 10.1148/radiol.212692.
[25]
ABDEL WAHAB C, JANNOT A S, BONAFFINI P A, et al. Diagnostic algorithm to differentiate benign atypical leiomyomas from malignant uterine sarcomas with diffusion-weighted MRI[J]. Radiology, 2020, 297(2): 361-371. DOI: 10.1148/radiol.2020191658.
[26]
MD R J, MD Z W, BS J L, et al. High b-value and ultra-high b-value diffusion weighted MRI in stroke[J/OL]. J Magn Reson Imag, 2024 [2024-06-30]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.29547. https://doi.org/10.1002/jmri.29547. DOI: 10.1002/jmri.29547.
[27]
ZHANG Z P, ZHA T T, JIANG Z X, et al. Using ultrahigh b-value diffusion-weighted imaging to noninvasively assess renal fibrosis in a rabbit model of renal artery stenosis[J]. J Comput Assist Tomogr, 2023, 47(5): 713-720. DOI: 10.1097/RCT.0000000000001487.
[28]
LIN C X, TIAN Y, LI J M, et al. Diagnostic value of multiple b-value diffusion-weighted imaging in discriminating the malignant from benign breast lesions[J/OL]. BMC Med Imaging, 2023, 23(1): 10 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/36631781/. DOI: 10.1186/s12880-022-00950-y.
[29]
QI Y F, HE Y L, LIN C Y, et al. Diffusion-weighted imaging of cervical cancer: Feasibility of ultra-high b-value at 3T[J/OL]. Eur J Radiol, 2020, 124: 108779 [2024-06-30]. https://doi.org/10.1016/j.ejrad.2019.108779. DOI: 10.1016/j.ejrad.2019.108779.
[30]
YANG C S, TAN Z Y, WANG Y J, et al. SwinUNeCCt: bidirectional hash-based agent transformer for cervical cancer MRI image multi-task learning[J/OL]. Sci Rep, 2024, 14(1): 24621 [2024-06-30]. https://doi.org/10.1038/s41598-024-75544-5. DOI: 10.1038/s41598-024-75544-5.
[31]
DONG Z C. Synthetic MRI: principles, techniques, and applications[J]. Int J Med Radiol, 2023, 46(5): 598-609. DOI: 10.19300/j.2023.Z20852.
[32]
ZHANG W J, LU N, HE H Q, et al. Application of synthetic magnetic resonance imaging and DWI for evaluation of prognostic factors in cervical carcinoma: a prospective preliminary study[J/OL]. Br J Radiol, 2023, 96(1141): 20220596 [2024-06-30]. https://doi.org/10.1259/bjr.20220596. DOI: 10.1259/bjr.20220596.
[33]
ZHANG X X, GUO J X, YUN Y, et al. Differentiation of muscular invasion in bladder cancer: additional value of synthetic magnetic resonance imaging[J]. Acad Radiol, 2024, 31(10): 4076-4084. DOI: 10.1016/j.acra.2024.03.011.
[34]
ZHENG Z F, WANG Z C, YIN H X, et al. The effect of bandwidth on evaluation of T1, T2 relaxation times and proton density using synthetic MRI: a phantom study[J]. Chin J Magn Reson Imag, 2022, 13(1): 98-102. DOI: 10.12015/issn.1674-8034.2022.01.019.
[35]
LIU K H, YANG W/Y), TIAN H P, et al. Nomogram based on clinical, pathological, and DWI quantitative parameters for predicting the programmed death-ligand 1 positive expression in cervical cancer: Comparison of different ROI options[J]. Chin J Magn Reson Imag, 2023, 14(10): 98-104, 115. DOI: 10.12015/issn.1674-8034.2023.10.017.
[36]
ZHANG Q, ZHANG Y L, LIU X. Research progress of synthetic magnetic resonance imaging technology in malignant tumors[J]. Chin J Magn Reson Imag, 2023, 14(5): 196-202. DOI: 10.12015/issn.1674-8034.2023.05.035.

PREV Value of enhanced T2 star-weighted angiography in the differential diagnosis between benign and malignant renal tumors with T2WI hypo-intensity
NEXT Study of 2D phase contrast magnetic resonance imaging in the diagnosis of iliac vein compression syndrome
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn