Share:
Share this content in WeChat
X
Clinical Article
Evaluation of the reproducibility of virtual magnetic resonance elastography based on intravoxel incoherent motion diffusion weighted imaging in the infrapatellar fat pad
FAN Qiuju  TAN Hui  GUO Yanbing  SHEN Li  YU Nan  YU Yong 

Cite this article as: FAN Q J, TAN H, GUO Y B, et al. Evaluation of the reproducibility of virtual magnetic resonance elastography based on intravoxel incoherent motion diffusion weighted imaging in the infrapatellar fat pad[J]. Chin J Magn Reson Imaging, 2025, 16(1): 152-157. DOI:10.12015/issn.1674-8034.2025.01.023.


[Abstract] Objective To explore the reproducibility of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) based virtual magnetic resonance elastography (vMRE) in measuring the stiffness of infrapatellar fat pad (IPFP).Materials and Methods A total of 50 subjects underwent two IVIM-DWI examinations utilizing 10 b-values, with intervals of 30 to 60 minutes, employing an 18-channel knee coil. The shift apparent diffusion coefficient (sADC) was calculated from two different b-values (200 to 800 s/mm2 and 200 to 1500 s/mm2), which were subsequently converted into virtual shear moduli based on IVIM-DWI MRI (μdiff_800 and μdiff_1500). Two readers independently outlined the entire IPFP region of interest (ROI) on the vMRE stiffness map to obtain the mean and standard deviation (SD) of μdiff. The intra-class correlation coefficient (ICC), coefficient of variation (CoV), and the limits of agreement (LoA) of Bland-Altmanwere utilized to evaluate short-term test-retest repeatability, as well as intra-observer and inter-observer consistency.Results The average and SD values of μdiff_1500 demonstrated excellent intra- and inter-observer consistency, with an ICC of ≥ 0.90 (P < 0.001). Notably, the intra-observer CoV for the SD values was greater than 10%. The intra and inter-observer ICC values for the average of μdiff_800 were 0.926 and 0.910, respectively (P < 0.001), while the ICC values for the SD of μdiff_800 were 0.841 and 0.855, respectively (P < 0.001), with all CoV exceeding 10%. In comparison to μdiff_800 (ICC = 0.886; CoV = 13.7%), the average of μdiff_1500 exhibited excellent repeatability upon retesting (ICC = 0.932; CoV = 7.5%). The average deviation (SD) between two scans of μdiff_1500 was -0.01 (0.37), whereas for μdiff_800, it was 0.05 (0.79). The 95% LoA for μdiff_1500 ranged from -0.88 to 0.87, while for μdiff_800, it ranged from -0.63 to 0.73.Conclusions The findings suggest that the vMRE, utilizing IVIM-DWI, holds substantial promise for assessing the tissue elasticity of the IPFP. Furthermore, the virtual elasticity values derived from b-value combinations of 200 to 1500 s/mm2 demonstrate superior intra-observer and inter-observer consistency, as well as enhanced short-term test-retest repeatability.
[Keywords] infrapatellar fat pad;stiffness;magnetic resonance imaging;intravoxel incoherent motion;diffusion-weighted imaging;virtual magnetic resonance elastography

FAN Qiuju1   TAN Hui1, 2*   GUO Yanbing1   SHEN Li1   YU Nan1   YU Yong1  

1 Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China

2 The First Clinical Medicine College of Lanzhou University, Lanzhou 730000, China

Corresponding author: TAN H, E-mail: cqtntanhui@163.com

Conflicts of interest   None.

Received  2024-09-19
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.023
Cite this article as: FAN Q J, TAN H, GUO Y B, et al. Evaluation of the reproducibility of virtual magnetic resonance elastography based on intravoxel incoherent motion diffusion weighted imaging in the infrapatellar fat pad[J]. Chin J Magn Reson Imaging, 2025, 16(1): 152-157. DOI:10.12015/issn.1674-8034.2025.01.023.

[1]
The Joint Surgery Branch of the Chinese Orthopaedic Association, The Subspecialty Group of Osteoarthritis of Chinese Association of Orthopaedic Surgeons, The National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), et al. Chinese guideline for diagnosis and treatment of osteoarthritis (2021 edition)[J]. Chin J Orthop, 2021, 41(18): 1291-1314. DOI: 10.3760/cma.j.cn121113-20210624-00424.
[2]
Chinese Society of Physical Medicine and Rehabilitation, West China Hospital of Sichuan University. Chinese guideline for the rehabilitation treatment of knee osteoarthritis(2023 edition)[J]. Chin J Evid Based Med, 2024, 24(1): 1-14. DOI: 10.7507/1672-2531.202306145.
[3]
DUONG V, OO W M, DING C H, et al. Evaluation and treatment of knee pain: a review[J]. JAMA, 2023, 330(16): 1568-1580. DOI: 10.1001/jama.2023.19675.
[4]
WANG M G, SEALE P, FURMAN D. The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis[J/OL]. NPJ Aging, 2024, 10(1): 34 [2024-06-30]. https://www.nature.com/articles/s41514-024-00159-z. DOI: 10.1038/s41514-024-00159-z.
[5]
BRAUN S, ZAUCKE F, BRENNEIS M, et al. The corpus adiposum infrapatellare (Hoffa's fat pad)-the role of the infrapatellar fat pad in osteoarthritis pathogenesis[J/OL]. Biomedicines, 2022, 10(5): 1071 [2024-06-30]. https://www.mdpi.com/2227-9059/10/5/1071. DOI: 10.3390/biomedicines10051071.
[6]
ONUMA H, TSUJI K, HOSHINO T, et al. Fibrotic changes in the infrapatellar fat pad induce new vessel formation and sensory nerve fiber endings that associate prolonged pain[J]. J Orthop Res, 2020, 38(6): 1296-1306. DOI: 10.1002/jor.24580.
[7]
SRIWATANANUKULKIT O, DESCLAUX S, TAWONSAWATRUK T, et al. Effectiveness of losartan on infrapatellar fat pad/synovial fibrosis and pain behavior in the monoiodoacetate-induced rat model of osteoarthritis pain[J/OL]. Biomed Pharmacother, 2023, 158: 114121 [2024-06-30]. https://www.sciencedirect.com/science/article/pii/S0753332222015104. DOI: 10.1016/j.biopha.2022.114121.
[8]
HERRERA D, ALMHDIE-IMJABBAR A, TOUMI H, et al. Magnetic resonance imaging-based biomarkers for knee osteoarthritis outcomes: a narrative review of prediction but not association studies[J/OL]. Eur J Radiol, 2024, 181: 111731 [2024-06-30]. https://www.ejradiology.com/article/S0720-048X(24)00447-9/fulltext. DOI: 10.1016/j.ejrad.2024.111731.
[9]
EHMAN R L. Magnetic resonance elastography: from invention to standard of care[J]. Abdom Radiol, 2022, 47(9): 3028-3036. DOI: 10.1007/s00261-022-03597-z.
[10]
TANG A, DZYUBAK B, YIN M, et al. MR elastography in nonalcoholic fatty liver disease: inter-center and inter-analysis-method measurement reproducibility and accuracy at 3T[J]. Eur Radiol, 2022, 32(5): 2937-2948. DOI: 10.1007/s00330-021-08381-z.
[11]
ZERUNIAN M, MASCI B, CARUSO D, et al. Liver magnetic resonance elastography: focus on methodology, technique, and feasibility[J/OL]. Diagnostics, 2024, 14(4): 379 [2024-06-30]. https://www.mdpi.com/2075-4418/14/4/379. DOI: 10.3390/diagnostics14040379.
[12]
YIN M, EHMAN R L. MR elastography: practical questions, from the AJR special series on imaging of fibrosis[J/OL]. AJR Am J Roentgenol, 2024, 222(1): e2329437 [2024-06-30]. https://www.ajronline.org/doi/10.2214/AJR.23.29437. DOI: 10.2214/AJR.23.29437.
[13]
LE BIHAN D, ICHIKAWA S, MOTOSUGI U. Diffusion and intravoxel incoherent motion MR imaging-based virtual elastography: a hypothesis-generating study in the liver[J]. Radiology, 2017, 285(2): 609-619. DOI: 10.1148/radiol.2017170025.
[14]
KROMREY M L, LE BIHAN D, ICHIKAWA S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.
[15]
WANG J H, LI X, LI C X, et al. The application value of virtual magnetic resonance elastography based on diffusion weighted imaging in focal liver lesions[J]. Chin J Magn Reson Imag, 2023, 14(11): 56-61. DOI: 10.12015/issn.1674-8034.2023.11.010.
[16]
LE BIHAN D. What can we see with IVIM MRI?[J]. NeuroImage, 2019, 187: 56-67. DOI: 10.1016/j.neuroimage.2017.12.062.
[17]
ZHANG W, DOHERTY M, PEAT G, et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis[J]. Ann Rheum Dis, 2010, 69(3): 483-489. DOI: 10.1136/ard.2009.113100.
[18]
SATAKE Y, IZUMI M, ASO K, et al. Association between infrapatellar fat pad ultrasound elasticity and anterior knee pain in patients with knee osteoarthritis[J/OL]. Sci Rep, 2023, 13(1): 20103 [2024-06-30]. https://www.nature.com/articles/s41598-023-47459-0. DOI: 10.1038/s41598-023-47459-0.
[19]
KITAGAWA T, KAWAHATA H, AOKI M, et al. Inhibitory effect of low-intensity pulsed ultrasound on the fibrosis of the infrapatellar fat pad through the regulation of HIF-1α in a carrageenan-induced knee osteoarthritis rat model[J/OL]. Biomed Rep, 2022, 17(4): 79 [2024-06-30]. https://www.spandidos-publications.com/10.3892/br.2022.1562. DOI: 10.3892/br.2022.1562.
[20]
KATAYAMA N, NODA I, FUKUMOTO Y, et al. Effects of isometric contraction of the quadriceps on the hardness and blood flow in the infrapatellar fat pad[J]. J Phys Ther Sci, 2021, 33(10): 722-727. DOI: 10.1589/jpts.33.722.
[21]
ZHANG Y N, FOWLER K J, OZTURK A, et al. Liver fibrosis imaging: a clinical review of ultrasound and magnetic resonance elastography[J]. J Magn Reson Imaging, 2020, 51(1): 25-42. DOI: 10.1002/jmri.26716.
[22]
PEPIN K M, MCGEE K P, ARANI A, et al. MR elastography analysis of glioma stiffness and IDH1-mutation status[J]. AJNR Am J Neuroradiol, 2018, 39(1): 31-36. DOI: 10.3174/ajnr.A5415.
[23]
RASMUSSEN A M, FRIISMOSE A I, MUSSMANN B, et al. Repeatability of diffusion-based stiffness prediction-A healthy volunteer study[J]. Radiography, 2024, 30(2): 524-530. DOI: 10.1016/j.radi.2024.01.008.
[24]
SUN K, ZHU Y, CHAI W M, et al. Diffusion-weighted MRI-based virtual elastography and shear-wave elastography for the assessment of breast lesions[J]. J Magn Reson Imaging, 2024, 60(5): 2207-2213. DOI: 10.1002/jmri.29302.
[25]
AUNAN-DIOP J S, ANDERSEN M C S, FRIISMOSE A I, et al. Virtual magnetic resonance elastography predicts the intraoperative consistency of meningiomas[J]. J Neuroradiol, 2023, 50(4): 396-401. DOI: 10.1016/j.neurad.2022.10.006.
[26]
LAGERSTRAND K, GAEDES N, ERIKSSON S, et al. Virtual magnetic resonance elastography has the feasibility to evaluate preoperative pituitary adenoma consistency[J]. Pituitary, 2021, 24(4): 530-541. DOI: 10.1007/s11102-021-01129-4.
[27]
JUNG H N, RYOO I, SUH S, et al. Evaluating the elasticity of metastatic cervical lymph nodes in head and neck squamous cell carcinoma patients using DWI-based virtual MR elastography[J]. Magn Reson Med Sci, 2024, 23(1): 49-55. DOI: 10.2463/mrms.mp.2022-0082.
[28]
CHEN J, SUN W, WANG W, et al. Diffusion-based virtual MR elastography for predicting recurrence of solitary hepatocellular carcinoma after hepatectomy[J/OL]. Cancer Imaging, 2024, 24(1): 106 [2024-06-30]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-024-00759-8. DOI: 10.1186/s40644-024-00759-8.
[29]
YU K Y, YING J, ZHAO T Y, et al. Prediction model for knee osteoarthritis using magnetic resonance-based radiomic features from the infrapatellar fat pad: data from the osteoarthritis initiative[J]. Quant Imaging Med Surg, 2023, 13(1): 352-369. DOI: 10.21037/qims-22-368.
[30]
CHEN Y J, ZHANG X T, LI M W, et al. Quantitative MR evaluation of the infrapatellar fat pad for knee osteoarthritis: using proton density fat fraction and T2* relaxation based on DIXON[J]. Eur Radiol, 2022, 32(7): 4718-4727. DOI: 10.1007/s00330-022-08561-5.
[31]
TAN H, KANG W L, FAN Q J, et al. Intravoxel incoherent motion diffusion-weighted MR imaging findings of infrapatellar fat pad signal abnormalities: comparison between symptomatic and asymptomatic knee osteoarthritis[J]. Acad Radiol, 2023, 30(7): 1374-1383. DOI: 10.1016/j.acra.2022.11.010.
[32]
CEN H, YAN Q R, HAN W Y, et al. Longitudinal association of infrapatellar fat pad signal intensity alteration with biochemical biomarkers in knee osteoarthritis[J]. Rheumatology, 2022, 62(1): 439-449. DOI: 10.1093/rheumatology/keac214.
[33]
CHANG J, LIAO Z, LU M, et al. Systemic and local adipose tissue in knee osteoarthritis[J]. Osteoarthritis Cartilage, 2018, 26(7): 864-871. DOI: 10.1016/j.joca.2018.03.004.

PREV Study of 2D phase contrast magnetic resonance imaging in the diagnosis of iliac vein compression syndrome
NEXT Comparison of the application value of 2D T2-TSE and 3D T2-SPACE sequences using MRI phase scout technology in prone position scanning of suspected occult tethered cord syndrome
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn