Share:
Share this content in WeChat
X
Technical Article
Comparison of the application value of 2D T2-TSE and 3D T2-SPACE sequences using MRI phase scout technology in prone position scanning of suspected occult tethered cord syndrome
LI Peng  YANG Liqi  XU Shoujun  ZHANG Yanhui  LIN Feifei  XIONG Hairui  SUN Jinlei  XIANG Kui 

Cite this article as: LI P, YANG L Q, XU S J, et al. Comparison of the application value of 2D T2-TSE and 3D T2-SPACE sequences using MRI phase scout technology in prone position scanning of suspected occult tethered cord syndrome[J]. Chin J Magn Reson Imaging, 2025, 16(1): 158-164. DOI:10.12015/issn.1674-8034.2025.01.024.


[Abstract] Objective To Compare the image quality and clinical value of two dimensional T2 weighted imaging turbo spin echo (2D T2-TSE) and three dimensional T2 weighted imaging sampling perfection with application optimized contrast using different flip angle evolution (3D T2-SPACE) sequences using MRI phase scout technology in prone position scanning of occult tethered cord syndrome occult tethered cord syndrome (OTCS).Materials and Methods A retrospective analysis was performed on 30 children under 6 years of age with suspected OTCS who received MRI examination in our hospital from January 2023 to October 2023. 2D T2-TSE and 3D T2-SPACE sequences in prone position using phase scout technology were both used to examine the children. Subjective scoring was based on overall image quality, spinal conus display, cauda equina and terminal filament display, subarachnoid cerebrospinal fluid signal display and background noise display, record the scanning time, and calculate the intraspinal image signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The image quality scores, scanning time, intraspinal SNR and CNR of the two sequences were compared. Paired t test and Mann-Whitney U test were used to compare and analyze the evaluation results of the two test methods. Using Kappa test, evaluate the consistency of subjective scoring by two radiologists and consistency of objective quantitative analysis by two technicians. P < 0.05 was considered statistically significant.Results In the subjective scores of image quality, the scores of the two radiologists were more consistent (Kappa = 0.794, P < 0.001), the overall image quality, cauda equina and terminal filament display, subarachnoid cerebrospinal fluid signal display and background noise display scores of 3D T2-SPACE sequence were higher than those of 2D T2-TSE sequence (Z = -2.305, -4.242, -3.453, -2.201, P < 0.05). On the display of the spinal conus, 2D T2-TSE consistent with 3D T2-SPACE (Z = -0.948, P > 0.05). In objective quantitative analysis, the scores of intraspinal SNR and CNR measurement results by two technicians were most consistent (Kappa = 0.851, 0.734, P < 0.001). Comparing the 2D T2-TSE with the 3D T2-SPACE sequence, intraspinal SNR and CNR of 3D T2-SPACE sequence were better than those of 2D T2-TSE sequence by analysis results of two measurements (The first measurement of SNR and CNR: t = -3.058, -3.703; The second measurement of SNR and CNR: t = -2.981, -2.965, P < 0.05 for all). The scanning time of 3D T2-SPACE sequence was longer than that of 2D T2-TSE sequence [(183.67±34.89) s vs. (120.53±27.93) s, t = -10.087, P < 0.001].Conclusions In the prone position MRI examination of suspected OTCS patients, the 3D T2-SPACE sequence using phase scout technology can provide better intraspinal image quality compared with the 2D T2-TSE sequence, smaller FOV and voxels, and more reliable information for clinical practice and treatment compared to the 2D T2-TSE sequence.
[Keywords] tethered cord syndrome;occult;three dimensional T2 weighted imaging sampling perfection with application-optimized contrast using different flip angle evolution (3D T2-SPACE);prone position;phase scout technology;children;magnetic resonance imaging

LI Peng   YANG Liqi   XU Shoujun   ZHANG Yanhui   LIN Feifei   XIONG Hairui   SUN Jinlei   XIANG Kui*  

Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518026, China

Corresponding author: XIANG K, E-mail: xiejiarui001@163.com

Conflicts of interest   None.

Received  2024-09-03
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.024
Cite this article as: LI P, YANG L Q, XU S J, et al. Comparison of the application value of 2D T2-TSE and 3D T2-SPACE sequences using MRI phase scout technology in prone position scanning of suspected occult tethered cord syndrome[J]. Chin J Magn Reson Imaging, 2025, 16(1): 158-164. DOI:10.12015/issn.1674-8034.2025.01.024.

[1]
HILLS S, PUGACHEVA A, WELTIN P, et al. Tethered cord syndrome in KBG syndrome[J]. Am J Med Genet A, 2023, 191(5): 1222-1226. DOI: 10.1002/ajmg.a.63128.
[2]
LIU M, DENG W, LU Y Y, et al. Surgical treatment of tethered cord syndrome showed promising outcome in young children with short duration[J]. Eur Rev Med Pharmacol Sci, 2023, 27(5): 1831-1836. DOI: 10.26355/eurrev_202303_31545.
[3]
MICHAEL M M, GARTON A L A, KUZAN-FISCHER C M, et al. A critical analysis of surgery for occult tethered cord syndrome[J]. Childs Nerv Syst, 2021, 37(10): 3003-3011. DOI: 10.1007/s00381-021-05287-5.
[4]
PAN J, BOOP S H, BARBER J K, et al. Perioperative complications and secondary retethering after pediatric tethered cord release surgery[J]. J Neurosurg Pediatr, 2023, 32(5): 607-616. DOI: 10.3171/2023.6.PEDS23259.
[5]
TSIPTSIOS D, SYSOEV K, ANASTASIADIS A, et al. Occult tethered cord syndrome: a reversible cause of paraparesis not to be missed[J]. Childs Nerv Syst, 2020, 36(9): 2089-2092. DOI: 10.1007/s00381-020-04701-8.
[6]
KEYKHOSRAVI E, FARAVANI E, DEHGHANI DASHTABI S, et al. Comparison of ultrasonographic findings between patients with tethered cord syndrome and healthy children[J]. Iran J Med Sci, 2023, 48(2): 130-136. DOI: 10.30476/IJMS.2022.93848.2517.
[7]
KOBAYASHI T, MIYAKOSHI N, ABE T, et al. Surgical technique of spine-shortening vertebral osteotomy for adult tethered cord syndrome: a case report and review of the literature[J/OL]. J Med Case Rep, 2023, 17(1): 425 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/37817238/. DOI: 10.1186/s13256-023-04155-x.
[8]
SHIELDS L B E, MUTCHNICK I S, PEPPAS D S, et al. Importance of physical examination and imaging in the detection of tethered cord syndrome[J/OL]. Glob Pediatr Health, 2019, 6: 2333794X19851419 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/31218244/. DOI: 10.1177/2333794X19851419.
[9]
REZAEE H, KEYKHOSRAVI E. Effect of untethering on occult tethered cord syndrome: a systematic review[J]. Br J Neurosurg, 2022, 36(5): 574-582. DOI: 10.1080/02688697.2021.1995589.
[10]
YANG J, WON J K, KIM K H, et al. Occult tethered cord syndrome: a rare, treatable condition[J]. Childs Nerv Syst, 2022, 38(2): 387-395. DOI: 10.1007/s00381-021-05353-y.
[11]
TANG Y F, WANG C, WANG L G, et al. Research progress on occult tethered cord syndrome[J]. Chin J Clin Neurosurg, 2018, 23(4): 289-291. DOI: 10.13798/j.issn.1009-153X.2018.04.024.
[12]
NAKANISHI K, TANAKA N, KAMEI N, et al. Use of prone position magnetic resonance imaging for detecting the terminal Filum in patients with occult tethered cord syndrome[J]. J Neurosurg Spine, 2013, 18(1): 76-84. DOI: 10.3171/2012.10.SPINE12321.
[13]
LI H, FAN S S, SU J, et al. Unilateral intervertebral space approach through small incision for the treatment of occult tethered cord syndrome in children[J]. J Clin Pediatr Surg, 2021, 20(12): 1154-1158. DOI: 10.12260/lcxewkzz.2021.12.010.
[14]
YANG A, XIAO X H, WANG Z L, et al. Carotid wall imaging with 3D_T2_FFE: sequence parameter optimization and comparison with 3D_T2_SPACE[J/OL]. Sci Rep, 2021, 11(1): 2255 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/33500428/. DOI: 10.1038/s41598-021-81309-1.
[15]
OZAKI S, OKAMOTO S, SHINOHARA N. 3D T2-weighted sampling perfection with application-optimized contrasts using different flip angle evolutions (SPACE) and 3D time-of-flight (TOF) MR angiography fusion imaging for occluded intracranial arteries[J]. J Neuroendovasc Ther, 2022, 16(9): 452-457. DOI: 10.5797/jnet.oa.2021-0102.
[16]
STAMATES M M, FRIM D M, YANG C W, et al. Magnetic resonance imaging in the prone position and the diagnosis of tethered spinal cord[J]. J Neurosurg Pediatr, 2018, 21(1): 4-10. DOI: 10.3171/2017.3.peds16596.
[17]
AOUN S G, AHMADIEH T Y EL, VANCE A Z, et al. The use of prone magnetic resonance imaging to rule out tethered cord in patients with structural spine anomalies: a diagnostic technical note for surgical decision-making[J/OL]. Cureus, 2019, 11(3): e4221 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/31123643/. DOI: 10.7759/cureus.4221.
[18]
PU R W, LIU A L, WANG J Z, et al. Influence of different compressed-sensing acceleration factors on three-dimensional magnetic resonance cholangiopancreatography image quality[J]. J Pract Radiol, 2021, 37(1): 128-131. DOI: 10.3969/j.issn.1002-1671.2021.01.031.
[19]
BARNAURE I, GALLEY J, FRITZ B, et al. Magnetic resonance imaging in the evaluation of cervical foraminal stenosis: comparison of 3D T2 SPACE with sagittal oblique 2D T2 TSE[J]. Skeletal Radiol, 2022, 51(7): 1453-1462. DOI: 10.1007/s00256-022-03988-9.
[20]
TANG Y, WU Y, ZHANG H, et al. Increased diagnostic confidence in the diagnosis of pituitary micro-lesions with the addition of three-dimensional sampling perfection with application-optimized contrasts using different flip-angle evolutions sequences[J]. Acta Radiol, 2019, 60(2): 213-220. DOI: 10.1177/0284185118774954.
[21]
TAYDAS O, OGUL H, GOZGEC E, et al. Evaluation of craniocervical pseudomeningoceles with three-dimensional T2-SPACE sequence at 3T[J]. Acta Radiol, 2021, 62(1): 80-86. DOI: 10.1177/0284185120912507.
[22]
HONG J J, KIM S, LEE G Y, et al. Demonstration of transverse ligament on 3D SPACE MRI in whiplash-associated disorder and nontraumatic conditions[J]. Eur Spine J, 2024, 33(3): 1171-1178. DOI: 10.1007/s00586-023-08079-4.
[23]
KONG C, LI X Y, SUN S Y, et al. The value of contrast-enhanced three-dimensional isotropic T2-weighted turbo spin-echo SPACE sequence in the diagnosis of patients with lumbosacral nerve root compression[J]. Eur Spine J, 2021, 30(4): 855-864. DOI: 10.1007/s00586-020-06600-7.
[24]
SAYAH A, KHAYAT E, LEE E C, et al. Accuracy of noncontrast T2 SPACE in active MS cord lesion detection[J]. AJNR Am J Neuroradiol, 2023, 44(12): 1458-1463. DOI: 10.3174/ajnr.A8060.
[25]
YAMAZAKI R, UCHIKOSHI M, HIURA Y, et al. T2 image contrast evaluation using three dimension sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE)[J]. Nihon Hoshasen Gijutsu Gakkai Zasshi, 2011, 67(12): 1515-1522. DOI: 10.6009/jjrt.67.1515.
[26]
GOZGEC E, OGUL H, DURMUS H. Evaluation of anterior and middle cranial Fossa intraosseous arachnoid granulations with 3D T2-SPACE sequence[J]. Acta Neurol Belg, 2023, 123(5): 1861-1868. DOI: 10.1007/s13760-022-02097-7.
[27]
HOSSEIN J, FARIBORZ F, MEHRNAZ R, et al. Evaluation of diagnostic value and T2-weighted three-dimensional isotropic turbo spin-echo (3D-SPACE) image quality in comparison with T2-weighted two-dimensional turbo spin-echo (2D-TSE) sequences in lumbar spine MR imaging[J/OL]. Eur J Radiol Open, 2018, 6: 36-41 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/30619918/. DOI: 10.1016/j.ejro.2018.12.003.
[28]
OUYANG F, WU Q, CHEN Y, et al. The value of 3D T2-weighted SPACE sequence in the differential diagnosis of spinal arteriovenous fistula and acute transverse myelitis[J]. Eur Spine J, 2023, 32(12): 4111-4117. DOI: 10.1007/s00586-023-07969-x.
[29]
HAKIM A, KURMANN C, POSPIESZNY K, et al. Diagnostic accuracy of high-resolution 3D T2-SPACE in detecting cerebral venous sinus thrombosis[J]. AJNR Am J Neuroradiol, 2022, 43(6): 881-886. DOI: 10.3174/ajnr.A7530.
[30]
CHEN W, NIU Y, LIN M Y, et al. Space-occupying lesions of the inner ear are easily misdiagnosed as endolymphatic Hydrops in a perilymph-enhanced sequence without the assistance of a heavily T2-weighted sequence[J]. J Comput Assist Tomogr, 2022, 46(5): 830-835. DOI: 10.1097/RCT.0000000000001331.
[31]
KINGER N P, CHIEN L C, SHARMA P S, et al. Comparison of 3D constructive interference in steady state (CISS) and T2 sampling perfection with application optimized contrasts using different flip angle evolution MR imaging of the intracranial trigeminal nerve and central skull base neuroforamina[J]. Neuroradiol J, 2022, 35(6): 678-683. DOI: 10.1177/19714009221084248.
[32]
SAMANCı R, OĞUL H, GÖKÇE A, et al. Investigation of incidental findings of temporomandibular joint disorders on brain magnetic resonance imaging in three-dimensional T2-weighted SPACE sequence performed for brain imaging[J]. Turk J Phys Med Rehabil, 2024, 70(1): 123-130. DOI: 10.5606/tftrd.2024.12538.
[33]
AMANO Y, ASAYAMA B, NORO S, et al. Objectively-captured changes in trigeminal fibers before and after microvascular decompression using 3D T2-SPACE MRI might relate to eventual residual symptoms[J]. Neurol Med Chir, 2023, 63(9): 400-408. DOI: 10.2176/jns-nmc.2022-0354.
[34]
KHALADKAR S, AJMERA P, RATHI S. Utility of 3D-T2 space MRI sequence in diagnosing a rare cause of lower backache: horseshoe cord and meningocoele manqué in a case of composite split cord malformation[J]. BMJ Case Rep, 2022, 15(3): e248615 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/35351760/. DOI: 10.1136/bcr-2021-248615.

PREV Evaluation of the reproducibility of virtual magnetic resonance elastography based on intravoxel incoherent motion diffusion weighted imaging in the infrapatellar fat pad
NEXT Atypical choroid plexus papilloma in the adult spinal canal: A case report
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn