Share:
Share this content in WeChat
X
Review
Advances in brain MRI research on the correlation between obesity and cognitive decline
JIANG Chunrong  LIANG Lingyan  LIU Siqiu  LEI Miao  DENG Demao 

Cite this article as: JIANG C R, LIANG L Y, LIU S Q, et al. Advances in brain MRI research on the correlation between obesity and cognitive decline[J]. Chin J Magn Reson Imaging, 2025, 16(1): 170-174, 186. DOI:10.12015/issn.1674-8034.2025.01.027.


[Abstract] Obesity is a high risk factor for many diseases and an independent risk factor for death worldwide. The six key areas of cognitive function include complex attention, executive function, learning and memory, language, sensorimotor control, and social cognition. Studies at home and abroad have shown that obesity causes cognitive function decline, involving reward and motivation, sensorimotor, memory and cognitive control. Obesity can cause changes in brain structure and function, and then lead to cognitive function decline, but its mechanism is still unclear. MRI has been widely used in the study of neurological and psychiatric diseases. This review analyzes the effects of obesity on cognitive function and summarizes its potential mechanisms. This paper discusses and summarizes the brain MRI characteristics of obesity induced cognitive function decline, and reveals its correlation from the aspects of brain structure, function, metabolism, blood perfusion, etc., providing directions for the prevention and treatment of cognitive function decline in obese patients in the future.
[Keywords] obesity;cognitive function;magnetic resonance imaging;brain structure;brain function

JIANG Chunrong1, 2   LIANG Lingyan3   LIU Siqiu2   LEI Miao3   DENG Demao3*  

1 Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning 530001, China

2 Department of Radiology, Guilin People's Hospital, Guilin 541000, China

3 Departmen of Radiology, Guangxi Zhuang Autonomous Region People's Hospital, Nanning 530021, China

Corresponding author: DENG D M, E-mail: demaodeng@163.com

Conflicts of interest   None.

Received  2024-10-11
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.027
Cite this article as: JIANG C R, LIANG L Y, LIU S Q, et al. Advances in brain MRI research on the correlation between obesity and cognitive decline[J]. Chin J Magn Reson Imaging, 2025, 16(1): 170-174, 186. DOI:10.12015/issn.1674-8034.2025.01.027.

[1]
OLSTHOORN L, VREEKEN D, KILIAAN A J. Gut microbiome, inflammation, and cerebrovascular function: link between obesity and cognition[J/OL]. Front Neurosci, 2021, 15: 761456 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34938153/. DOI: 10.3389/fnins.2021.761456.
[2]
Report on the status of nutrition and chronic diseases in Chinese residents (2020)[J]. Acta Nutr Sin, 2020, 42(6): 521.
[3]
POWELL-WILEY T M, POIRIER P, BURKE L E, et al. Obesity and cardiovascular disease: a scientific statement from the American heart association[J/OL]. Circulation, 2021, 143(21): e984-e1010 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/33882682/. DOI: 10.1161/cir.0000000000000973.
[4]
LIVINGSTON G, HUNTLEY J, SOMMERLAD A, et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission[J]. Lancet, 2020, 396(10248): 413-446. DOI: 10.1016/S0140-6736(20)30367-6.
[5]
LI G Y, HU Y, ZHANG W C, et al. Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions[J]. Mol Psychiatry, 2023, 28(4): 1466-1479. DOI: 10.1038/s41380-023-02025-y.
[6]
ALSUWAIDI H N, AHMED A I, ALKORBI H A, et al. Association between metabolic syndrome and decline in cognitive function: a cross-sectional study[J/OL]. Diabetes Metab Syndr Obes, 2023, 16: 849-859 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/33882682/. DOI: 10.2147/DMSO.S393282.
[7]
MINA T, YEW Y W, NG H K, et al. Adiposity impacts cognitive function in Asian populations: an epidemiological and Mendelian Randomization study[J/OL]. Lancet Reg Health West Pac, 2023, 33: 100710 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/36851942/. DOI: 10.1016/j.lanwpc.2023.100710.
[8]
FERNÁNDEZ-ANDÚJAR M, MORALES-GARCÍA E, GARCÍA- CASARES N. Obesity and gray matter volume assessed by neuroimaging: a systematic review[J/OL]. Brain Sci, 2021, 11(8): 999 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34439618/. DOI: 10.3390/brainsci11080999.
[9]
THORNTON T, MILLS D, BLISS E. The impact of lipopolysaccharide on cerebrovascular function and cognition resulting from obesity-induced gut dysbiosis[J/OL]. Life Sci, 2024, 336: 122337 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38072189/. DOI: 10.1016/j.lfs.2023.122337.
[10]
ZHANG Q, JIN K Y, CHEN B, et al. Overnutrition induced cognitive impairment: insulin resistance, gut-brain axis, and neuroinflammation[J/OL]. Front Neurosci, 2022, 16: 884579 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/35873818/. DOI: 10.3389/fnins.2022.884579.
[11]
VREEKEN D, SEIDEL F, DE LA ROIJ G, et al. Impact of white adipose tissue on brain structure, perfusion, and cognitive function in patients with severe obesity: the BARICO study[J/OL]. Neurology, 2023, 100(7): e703-e718 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/36332987/. DOI: 10.1212/wnl.0000000000201538.
[12]
WOO A, BOTTA A, SHI S S W, et al. Obesity-related neuroinflammation: magnetic resonance and microscopy imaging of the brain[J]. Int J Mol Sci, 2022, 23(15): 8790. DOI: 10.3390/ijms23158790.
[13]
BAO Y J, CHEN X X, LI Y X, et al. Chronic low-grade inflammation and brain structure in the middle-aged and elderly adults[J/OL]. Nutrients, 2024, 16(14): 2313 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/39064755/. DOI: 10.3390/nu16142313.
[14]
SCHMITT L O, GASPAR J M. Obesity-induced brain neuroinflammatory and mitochondrial changes[J/OL]. Metabolites, 2023, 13(1): 86 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/36677011/. DOI: 10.3390/metabo13010086.
[15]
TZOUNAKOU A M, STATHORI G, PALTOGLOU G, et al. Childhood obesity, hypothalamic inflammation, and the onset of puberty: a narrative review[J/OL]. Nutrients, 2024, 16(11): 1720 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38892653/. DOI: 10.3390/nu16111720.
[16]
XIANG Q Y, YU M H, CAI Q, et al. Multi-omics insights into the microbiota-gut-brain axis and cognitive improvement post-bariatric surgery[J/OL]. J Transl Med, 2024, 22(1): 945 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/39420319/. DOI: 10.1186/s12967-024-05757-9.
[17]
ZHOU J, WU X L, XIANG T Y, et al. Dynamical alterations of brain function and gut microbiome in weight loss[J/OL]. Front Cell Infect Microbiol, 2023, 13: 1269548 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38173792/. DOI: 10.3389/fcimb.2023.1269548.
[18]
DEKKERS I A, JANSEN P R, LAMB H J. Obesity, brain volume, and white matter microstructure at MRI: a cross-sectional UK biobank study[J/OL]. Radiology, 2019, 292(1): 270 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/31219759/. DOI: 10.1148/radiol.2019194010.
[19]
ŁAPIŃSKA L, SZUM-JAKUBOWSKA A, KRENTOWSKA A, et al. The relationship between brain structure volumes, depressive symptoms and body composition in obese/overweight and normal-/ underweight women[J/OL]. Sci Rep, 2024, 14(1): 21021 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/39251805/. DOI: 10.1038/s41598-024-71924-z.
[20]
OPEL N, THALAMUTHU A, MILANESCHI Y, et al. Brain structural abnormalities in obesity: relation to age, genetic risk, and common psychiatric disorders: evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group[J]. Mol Psychiatry, 2021, 26(9): 4839-4852. DOI: 10.1038/s41380-020-0774-9.
[21]
LI L, YU H, ZHONG M, et al. Gray matter volume alterations in subjects with overweight and obesity: Evidence from a voxel-based meta-analysis[J/OL]. Front Psychiatry, 2022, 13: 955741 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/36226110/. DOI: 10.3389/fpsyt.2022.955741.
[22]
CHEN E Y, EICKHOFF S B, GIOVANNETTI T, et al. Obesity is associated with reduced orbitofrontal cortex volume: a coordinate-based meta-analysis[J/OL]. Neuroimage Clin, 2020, 28: 102420 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/32961404/. DOI: 10.1016/j.nicl.2020.102420.
[23]
HERRMANN M J, TESAR A K, BEIER J, et al. Grey matter alterations in obesity: a meta-analysis of whole-brain studies[J]. Obes Rev, 2019, 20(3): 464-471. DOI: 10.1111/obr.12799.
[24]
LIZARBE B, CAMPILLO B, GUADILLA I, et al. Magnetic resonance assessment of the cerebral alterations associated with obesity development[J]. J Cereb Blood Flow Metab, 2020, 40(11): 2135-2151. DOI: 10.1177/0271678X20941263.
[25]
CHO J, SEO S, KIM W R, et al. Association between visceral fat and brain cortical thickness in the elderly: a neuroimaging study[J/OL]. Front Aging Neurosci, 2021, 13: 694629 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34248609/. DOI: 10.3389/fnagi.2021.694629.
[26]
PFLANZ C P, TOZER D J, HARSHFIELD E L, et al. Central obesity is selectively associated with cerebral gray matter atrophy in 15, 634 subjects in the UK Biobank[J]. Int J Obes, 2022, 46(5): 1059-1067. DOI: 10.1038/s41366-021-00992-2.
[27]
SYAN S K, OWENS M M, GOODMAN B, et al. Deficits in executive function and suppression of default mode network in obesity[J/OL]. Neuroimage Clin, 2019, 24: 102015 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/31795049/. DOI: 10.1016/j.nicl.2019.102015.
[28]
DAOUST J, SCHAFFER J, ZEIGHAMI Y, et al. White matter integrity differences in obesity: a meta-analysis of diffusion tensor imaging studies[J/OL]. Neurosci Biobehav Rev, 2021, 129: 133-141 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34284063/. DOI: 10.1016/j.neubiorev.2021.07.020.
[29]
DIETZE L M F, MCWHINNEY S R, RADUA J, et al. Extended and replicated white matter changes in obesity: Voxel-based and region of interest meta-analyses of diffusion tensor imaging studies[J/OL]. Front Nutr, 2023, 10: 1108360 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/36960197/. DOI: 10.3389/fnut.2023.1108360.
[30]
CHENG X D, WANG W C, SUN C, et al. White matter integrity abnormalities in healthy overweight individuals revealed by whole brain meta-analysis of diffusion tensor imaging studies[J/OL]. J Obes, 2023, 2023(1): 7966540 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/37908490/. DOI: 10.1155/2023/7966540.
[31]
SPINDLER M, ÖZYURT J, THIEL C M. Automated diffusion-based parcellation of the hypothalamus reveals subunit-specific associations with obesity[J/OL]. Sci Rep, 2020, 10(1): 22238 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/33335266/. DOI: 10.1038/s41598-020-79289-9.
[32]
GÓMEZ-APO E, MONDRAGÓN-MAYA A, FERRARI-DÍAZ M, et al. Structural brain changes associated with overweight and obesity[J/OL]. J Obes, 2021, 2021: 6613385 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34327017/. DOI: 10.1155/2021/6613385.
[33]
BOLZENIUS J D, LAIDLAW D H, CABEEN R P, et al. Brain structure and cognitive correlates of body mass index in healthy older adults[J/OL]. Behav Brain Res, 2015, 278: 342-347 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/25448431/. DOI: 10.1016/j.bbr.2014.10.010.
[34]
PARSONS N, STEWARD T, CLOHESY R, et al. A systematic review of resting-state functional connectivity in obesity: Refining current neurobiological frameworks and methodological considerations moving forward[J]. Rev Endocr Metab Disord, 2022, 23(4): 861-879. DOI: 10.1007/s11154-021-09665-x.
[35]
LI X, SUN Y B, ZHOU J, et al. Progress in real-time functional magnetic resonance imaging neurofeedback in obesity[J]. Chin J Magn Reson Imag, 2024, 15(5): 175-180. DOI: 10.12015/issn.1674-8034.2024.05.028.
[36]
ZHANG P, WU G W, TANG L R, et al. Altered brain structural reorganization and hierarchical integrated processing in obesity[J/OL]. Front Neurosci, 2022, 16: 796792 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/35368267/. DOI: 10.3389/fnins.2022.796792.
[37]
POGHOSYAN V, IOANNOU S, AL-AMRI K M, et al. Spatiotemporal profile of altered neural reactivity to food images in obesity: Reward system is altered automatically and predicts efficacy of weight loss intervention[J/OL]. Front Neurosci, 2023, 17: 948063 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/36845430/. DOI: 10.3389/fnins.2023.948063.
[38]
ZHANG P, LIU Y, YU F X, et al. Hierarchical integrated processing of reward-related regions in obese males: a graph-theoretical-based study[J/OL]. Appetite, 2021, 159: 105055 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/33248191/. DOI: 10.1016/j.appet.2020.105055.
[39]
MENG Q Q, HAN Y, JI G, et al. Disrupted topological organization of the frontal-mesolimbic network in obese patients[J]. Brain Imaging Behav, 2018, 12(6): 1544-1555. DOI: 10.1007/s11682-017-9802-z.
[40]
KIM S H, CHUNG J H, KIM T H, et al. The effects of repetitive transcranial magnetic stimulation on body weight and food consumption in obese adults: a randomized controlled study[J]. Brain Stimul, 2019, 12(6): 1556-1564. DOI: 10.1016/j.brs.2019.07.020.
[41]
KIM S H, PARK B Y, BYEON K, et al. The effects of high-frequency repetitive transcranial magnetic stimulation on resting-state functional connectivity in obese adults[J]. Diabetes Obes Metab, 2019, 21(8): 1956-1966. DOI: 10.1111/dom.13763.
[42]
FERRULLI A, MACRÌ C, TERRUZZI I, et al. Weight loss induced by deep transcranial magnetic stimulation in obesity: a randomized, double-blind, sham-controlled study[J]. Diabetes Obes Metab, 2019, 21(8): 1849-1860. DOI: 10.1111/dom.13741.
[43]
FRANKORT A, ROEFS A, SIEP N, et al. Reward activity in satiated overweight women is decreased during unbiased viewing but increased when imagining taste: an event-related fMRI study[J]. Int J Obes, 2012, 36(5): 627-637. DOI: 10.1038/ijo.2011.213.
[44]
GARCÍA-GARCÍA I, JURADO M Á, GAROLERA M, et al. Functional network centrality in obesity: a resting-state and task fMRI study[J]. Psychiatry Res, 2015, 233(3): 331-338. DOI: 10.1016/j.pscychresns.2015.05.017.
[45]
HAN P F, ROITZSCH C, HORSTMANN A, et al. Increased brain reward responsivity to food-related odors in obesity[J]. Obesity, 2021, 29(7): 1138-1145. DOI: 10.1002/oby.23170.
[46]
KELLY L, BROWN C, MICHALIK D, et al. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA), updates in 2022-2023. Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease: Opportunities for therapy[J]. Alzheimers Dement, 2024, 20(2): 1421-1435. DOI: 10.1002/alz.13512.
[47]
KNIGHT S P, LAIRD E, WILLIAMSON W, et al. Obesity is associated with reduced cerebral blood flow-modified by physical activity[J/OL]. Neurobiol Aging, 2021, 105: 35-47 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34022537/. DOI: 10.1016/j.neurobiolaging.2021.04.008.
[48]
BADJI A, SABRA D, BHERER L, et al. Arterial stiffness and brain integrity: a review of MRI findings[J/OL]. Ageing Res Rev, 2019, 53: 100907 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/31063866/. DOI: 10.1016/j.arr.2019.05.001.
[49]
QIAO Y S, TANG X Y, CHAI Y H, et al. Cerebral blood flow alterations and obesity: a systematic review and meta-analysis[J]. J Alzheimers Dis, 2022, 90(1): 15-31. DOI: 10.3233/JAD-220601.
[50]
STILLMAN C M, JAKICIC J, ROGERS R, et al. Changes in cerebral perfusion following a 12-month exercise and diet intervention[J/OL]. Psychophysiology, 2021, 58(7): e13589 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/32343445/. DOI: 10.1111/psyp.13589.
[51]
ESPELAND M A, LUCHSINGER J A, NEIBERG R H, et al. Long term effect of intensive lifestyle intervention on cerebral blood flow[J]. J Am Geriatr Soc, 2018, 66(1): 120-126. DOI: 10.1111/jgs.15159.
[52]
VINTS W A J, KUŠLEIKIENĖ S, SHEORAN S, et al. Body fat and components of sarcopenia relate to inflammation, brain volume, and neurometabolism in older adults[J/OL]. Neurobiol Aging, 2023, 127: 1-11 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/37004309/. DOI: 10.1016/j.neurobiolaging.2023.02.011.
[53]
SETKOWICZ Z, GAŹDZIŃSKA A, OSOBA J J, et al. Does long-term high fat diet always lead to smaller hippocampi volumes, concentrationsmetabolite, and worse learning and memory? A magnetic resonance and behavioral study in wistar rats[J/OL]. PLoS One, 2015, 10(10): e0139987 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/26447788/. DOI: 10.1371/journal.pone.0139987.
[54]
NEVES T M G, SIMOES E, OTADUY M C G, et al. Inverse association between hypothalamic N-acetyl aspartate/creatine ratio and indices of body mass in adolescents with obesity[J]. J Nutr, 2022, 152(3): 663-670. DOI: 10.1093/jn/nxab415.
[55]
QIAN C Q, LI T T, ZHU L, et al. Research progress of brain changes in obesity by magnetic resonance imaging[J]. Radiol Pract, 2024, 39(7): 966-970. DOI: 10.13609/j.cnki.1000-0313.2024.07.019.

PREV A case of MRI manifestation of heterotopic pregnancy
NEXT Recent progress and prospect of multimodal magnetic resonance imaging in Gilles de la Tourette syndrome
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn