Share:
Share this content in WeChat
X
Review
Recent progress and prospect of multimodal magnetic resonance imaging in Gilles de la Tourette syndrome
LIU Xiao  GUO Xiangfa  LI Xiaoling  WANG Yang  GAO Shenglan  WEI Zeyi 

Cite this article as: LIU X, GUO X F, LI X L, et al. Recent progress and prospect of multimodal magnetic resonance imaging in Gilles de la Tourette syndrome[J]. Chin J Magn Reson Imaging, 2025, 16(1): 175-180, 192. DOI:10.12015/issn.1674-8034.2025.01.028.


[Abstract] Gilles de la Tourette syndrome (GTS) is a category of childhood neurodevelopmental disorders, with a few cases extending to adulthood. Typical signs of GTS include involuntary movement and vocal tic, often accompanied by attention deficit hyperactivity disorder, which seriously affects the quality of life of patients. The onset of GTS is associated with abnormal circuit function of cortico-striato-thalamo-cortical (CSTC). At present, the research on the mechanism of GTS pathogenesis, premonitory impulse, tic degree and social cognition based on MRI has gradually become a hot topic in the industry. Structural and functional MRI can reveal the activation and network changes of GTS sensory, motor, emotional, cognitive and other related brain areas. The author has reviewed recent literature on various modalities of imaging, including voxel-based morphometry (VBM), diffusion tensor imaging (DTI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS), and summarized the findings to help with early disease identification and further exploration.
[Keywords] Gilles de la Tourette syndrome;magnetic resonance imaging;structural magnetic resonance imaging;diffusion tensor imaging;functional magnetic resonance imaging;magnetic resonance spectroscopy

LIU Xiao1, 2   GUO Xiangfa3   LI Xiaoling4*   WANG Yang4   GAO Shenglan5   WEI Zeyi3  

1 Department of Pediatrics, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China

2 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China

3 Department of Medical Imaging, the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, China

4 Department of CT Magnetic Resonance, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China

5 Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

Corresponding author: LI X L, E-mail: lixiaoling1525@163.com

Conflicts of interest   None.

Received  2024-09-03
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.028
Cite this article as: LIU X, GUO X F, LI X L, et al. Recent progress and prospect of multimodal magnetic resonance imaging in Gilles de la Tourette syndrome[J]. Chin J Magn Reson Imaging, 2025, 16(1): 175-180, 192. DOI:10.12015/issn.1674-8034.2025.01.028.

[1]
GAO Y, WANG S, WANG A N, et al. Comparison of children and adults in deep brain stimulation for Tourette Syndrome: a large-scale multicenter study of 102 cases with long-term follow-up[J/OL]. BMC Med, 2024, 22(1): 218 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/38816877/. DOI: 10.1186/s12916-024-03432-w.
[2]
SZEJKO N, ROBINSON S, HARTMANN A, et al. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part I: assessment[J]. Eur Child Adolesc Psychiatry, 2022, 31(3): 383-402. DOI: 10.1007/s00787-021-01842-2.
[3]
HARTMANN A, ANDRÉN P, ATKINSON-CLÉMENT C, et al. Tourette syndrome research highlights from 2022[J/OL]. F1000Res, 2023, 12: 826 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/37691732/. DOI: 10.12688/f1000research.135702.1.
[4]
HU Y, YU D, LIU Z, et al. A qualitative study of Chinese parental perspectives on the causes of Tourette syndrome in children[J/OL]. Sci Rep, 2024, 14(1): 6499 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/38499609/. DOI: 10.1038/s41598-024-57062-6.
[5]
JOHNSON K A, WORBE Y, FOOTE K D, et al. Tourette syndrome: clinical features, pathophysiology, and treatment[J]. Lancet Neurol, 2023, 22(2): 147-158. DOI: 10.1016/S1474-4422(22)00303-9.
[6]
YEN C, LIN C L, CHIANG M C. Exploring the frontiers of neuroimaging: a review of recent advances in understanding brain functioning and disorders[J/OL]. Life, 2023, 13(7): 1472 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/37511847/. DOI: 10.3390/life13071472.
[7]
UEDA K, BLACK K J. Recent progress on Tourette syndrome[J/OL]. Fac Rev, 2021, 10: 70 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/34557874/. DOI: 10.12703/r/10-70.
[8]
BRANCA C, BORTOLATO M. The role of neuroactive steroids in tic disorders[J/OL]. Neurosci Biobehav Rev, 2024, 160: 105637 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/38519023/. DOI: 10.1016/j.neubiorev.2024.105637.
[9]
RAPPENEAU V, DÍAZ F C. Convergence of oxytocin and dopamine signalling in neuronal circuits: Insights into the neurobiology of social interactions across species[J/OL]. Neurosci Biobehav Rev, 2024, 161: 105675 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/38608828/. DOI: 10.1016/j.neubiorev.2024.105675.
[10]
ALI D N, ALI H M, LOPEZ M R, et al. Astrocytic GABAergic regulation in alcohol use and major depressive disorders[J/OL]. Cells, 2024, 13(4): 318 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/38391931/. DOI: 10.3390/cells13040318.
[11]
MAHONE E M, PUTS N A, EDDEN R A E, et al. GABA and glutamate in children with Tourette syndrome: a 1H MR spectroscopy study at 7T[J/OL]. Psychiatry Res Neuroimaging, 2018, 273: 46-53 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/29329743/. DOI: 10.1016/j.pscychresns.2017.12.005.
[12]
FENG P, SHI Z G, SUN Z Q, et al. Neurotransmitters and Gilles de la Tourette syndrome[J]. J Chongqing Med Univ, 2021, 46(5): 516-521. DOI: 10.13406/j.cnki.cyxb.002745.
[13]
XU H Y, YANG F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia[J/OL]. Transl Psychiatry, 2022, 12: 464 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/36344514/. DOI: 10.1038/s41398-022-02233-0.
[14]
SHITOVA A D, ZHARIKOVA T S, KOVALEVA O N, et al. Tourette syndrome and obsessive-compulsive disorder: a comprehensive review of structural alterations and neurological mechanisms[J/OL]. Behav Brain Res, 2023, 453: 114606 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/37524204/. DOI: 10.1016/j.bbr.2023.114606.
[15]
BONNAVION P, VARIN C, FAKHFOURI G, et al. Striatal projection neurons coexpressing dopamine D1 and D2 receptors modulate the motor function of D1-D2-SPNs[J/OL]. Nat Neurosci, 2024, 27: 1783-1793 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/38965445/. DOI: 10.1038/s41593-024-01694-4.
[16]
FUJIYAMA F, KARUBE F, HIRAI Y. Globus pallidus is not independent from striatal direct pathway neurons: an up-to-date review[J/OL]. Mol Brain, 2024, 17(1): 34 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/38849935/. DOI: 10.1186/s13041-024-01107-4.
[17]
FENG P, CHEN Y H, SUN K X, et al. Volatile oil from Acori graminei Rhizoma affected the synaptic plasticity of rats with tic disorders by modulating dopaminergic and glutamatergic systems[J/OL]. J Ethnopharmacol, 2024, 335: 118676 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/39147000/. DOI: 10.1016/j.jep.2024.118676.
[18]
OLIVETTI P R, BALSAM P D, SIMPSON E H, et al. Emerging roles of striatal dopamine D2 receptors in motivated behaviour: Implications for psychiatric disorders[J]. Basic Clin Pharmacol Toxicol, 2020, 126(Suppl 6): 47-55. DOI: 10.1111/bcpt.13271.
[19]
ROESSNER V, EICHELE H, STERN J S, et al. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part III: pharmacological treatment[J]. Eur Child Adolesc Psychiatry, 2022, 31(3): 425-441. DOI: 10.1007/s00787-021-01899-z.
[20]
CHEN J X, TIAN C, ZHANG Q, et al. Changes in volume of subregions within basal Ganglia in obsessive-compulsive disorder: a study with atlas-based and VBM methods[J/OL]. Front Neurosci, 2022, 16: 890616 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/35794954/. DOI: 10.3389/fnins.2022.890616.
[21]
GREENE D J, WILLIAMS III A C, KOLLER J M, et al. Brain structure in pediatric Tourette syndrome[J]. Mol Psychiatry, 2017, 22(7): 972-980. DOI: 10.1038/mp.2016.194.
[22]
LIU Y, MIAO W, WANG J Q, et al. Structural abnormalities in early Tourette syndrome children: a combined voxel-based morphometry and tract-based spatial statistics study[J/OL]. PLoS One, 2013, 8(9): e76105 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/24098769/. DOI: 10.1371/journal.pone.0076105.
[23]
JACKSON S R, LOAYZA J, CRIGHTON M, et al. The role of the Insula in the generation of motor tics and the experience of the premonitory urge-to-tic in Tourette syndrome[J/OL]. Cortex, 2020, 126: 119-133 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/32070809/. DOI: 10.1016/j.cortex.2019.12.021.
[24]
LIANG Z F, AREFIN T M, LEE C H, et al. Using mesoscopic tract-tracing data to guide the estimation of fiber orientation distributions in the mouse brain from diffusion MRI[J/OL]. Neuroimage, 2023, 270: 119999 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/36871795/. DOI: 10.1016/j.neuroimage.2023.119999.
[25]
GONG Z B, CHEN H H, LIU S F, et al. Research progress of magnetic resonance diffusion spectrum imaging in the nervous system[J]. Chin J Magn Reson Imag, 2020, 11(9): 809-812, 816. DOI: 10.12015/issn.1674-8034.2020.09.020.
[26]
LI Y X, DANG W L, ZHOU R Y, et al. New progress in the application of diffusion tensor imaging in autism spectrum disorders[J]. Chin J Magn Reson Imag, 2022, 13(11): 119-124. DOI: 10.12015/issn.1674-8034.2022.11.023.
[27]
CAMKURT M A, MELICHER T, MWANGI B, et al. Investigation of endophenotype potential of decreased fractional anisotropy in pediatric bipolar disorder patients and unrelated offspring of bipolar disorder patients[J]. CNS Spectr, 2022, 27(6): 709-715. DOI: 10.1017/S1092852921000584.
[28]
HUANG R, WANG A, ZHANG Y, et al. Alterations of the cerebral microstructure in patients with noise-induced hearing loss: a diffusion tensor imaging study[J/OL]. Brain Behav, 2024, 14(4): e3479 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/38648388/. DOI: 10.1002/brb3.3479.
[29]
BHARTI K, CONTE G, TOMMASIN S, et al. White matter alterations in drug-naïve children with Tourette syndrome and obsessive-compulsive disorder[J/OL]. Front Neurol, 2022, 13: 960979 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/36262836/. DOI: 10.3389/fneur.2022.960979.
[30]
HSU C J, WONG L C, WANG H P, et al. The multimodality neuroimage findings in individuals with Tourette syndrome[J]. Pediatr Neonatol, 2020, 61(5): 467-474. DOI: 10.1016/j.pedneo.2020.03.007.
[31]
SIGURDSSON H P, PÉPÉS S E, JACKSON G M, et al. Alterations in the microstructure of white matter in children and adolescents with Tourette syndrome measured using tract-based spatial statistics and probabilistic tractography[J/OL]. Cortex, 2018, 104: 75-89 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/29758375/. DOI: 10.1016/j.cortex.2018.04.004.
[32]
SCHLEMM E, CHENG B, FISCHER F, et al. Altered topology of structural brain networks in patients with Gilles de la Tourette syndrome[J/OL]. Sci Rep, 2017, 7(1): 10606 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/28878322/. DOI: 10.1038/s41598-017-10920-y.
[33]
SUN F, HUANG Y, WANG J, et al. Research progress in diffusion spectrum imaging[J/OL]. Brain Sci, 2023, 13(10): 1497 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/37891866/. DOI: 10.3390/brainsci13101497.
[34]
SUN F, HUANG Y, WANG J, et al. Research progress in diffusion spectrum imaging[J/OL]. Brain Sci, 2023, 13(10): 1497 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/37891866/. DOI: 10.3390/brainsci13101497.
[35]
HSU C J, WONG L C, WANG H P, et al. The microstructural change of the brain and its clinical severity association in pediatric Tourette syndrome patients[J/OL]. J Neurodev Disord, 2023, 15(1): 34 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/37880631/. DOI: 10.1186/s11689-023-09501-0.
[36]
LESKINEN S, SINGHA S, MEHTA N H, et al. Applications of functional magnetic resonance imaging to the study of functional connectivity and activation in neurological disease: a scoping review of the literature[J/OL]. World Neurosurg, 2024, 189: 185-192 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/38843969/. DOI: 10.1016/j.wneu.2024.06.003.
[37]
LIANG X H, YUAN Q Q, XUE C, et al. Convergent functional changes of the episodic memory impairment in mild cognitive impairment: an ALE meta-analysis[J/OL]. Front Aging Neurosci, 2022, 14: 919859 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/35912082/. DOI: 10.3389/fnagi.2022.919859.
[38]
LI X L, CAI L N, CUI X, et al. Magnetic resonance research progress in amnestic mild cognitive impairment[J]. Chin J Magn Reson Imag, 2021, 12(11): 94-96. DOI: 10.12015/issn.1674-8034.2021.11.023.
[39]
ZHANG J F, LIU D Q, QIAN S F, et al. The neural correlates of amplitude of low-frequency fluctuation: a multimodal resting-state MEG and fMRI-EEG study[J]. Cereb Cortex, 2023, 33(4): 1119-1129. DOI: 10.1093/cercor/bhac124.
[40]
LIU Y, WANG J Q, ZHANG J S, et al. Altered spontaneous brain activity in children with early Tourette syndrome: a resting-state fMRI study[J/OL]. Sci Rep, 2017, 7(1): 4808 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/28684794/. DOI: 10.1038/s41598-017-04148-z.
[41]
LOU Y T, LI X L, WANG Y, et al. Frequency-specific regional homogeneity alterations in Tourette syndrome[J/OL]. Front Psychiatry, 2020, 11: 543049 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/33391040/. DOI: 10.3389/fpsyt.2020.543049.
[42]
BHIKRAM T, ARNOLD P, CRAWLEY A, et al. The functional connectivity profile of tics and obsessive-compulsive symptoms in Tourette Syndrome[J/OL]. J Psychiatr Res, 2020, 123: 128-135 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/32065948/. DOI: 10.1016/j.jpsychires.2020.01.019.
[43]
TIKOO S, SUPPA A, TOMMASIN S, et al. The cerebellum in drug-naive children with Tourette syndrome and obsessive-compulsive disorder[J]. Cerebellum, 2022, 21(6): 867-878. DOI: 10.1007/s12311-021-01327-7.
[44]
TIKOO S, CARDONA F, TOMMASIN S, et al. Resting-state functional connectivity in drug-naive pediatric patients with Tourette syndrome and obsessive-compulsive disorder[J/OL]. J Psychiatr Res, 2020, 129: 129-140 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/32912593/. DOI: 10.1016/j.jpsychires.2020.06.021.
[45]
LUO L K, LIAO Y, JIA F L, et al. Altered dynamic functional and effective connectivity in drug-naive children with Tourette syndrome[J/OL]. Transl Psychiatry, 2024, 14(1): 48 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/38253543/. DOI: 10.1038/s41398-024-02779-1.
[46]
OPENNEER T J C, MARSMAN J C, VAN DER MEER D, et al. A graph theory study of resting-state functional connectivity in children with Tourette syndrome[J/OL]. Cortex, 2020, 126: 63-72 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/32062470/. DOI: 10.1016/j.cortex.2020.01.006.
[47]
HAN S W, LI X L, WANG Y, et al. Progress in multimodal MRI research on acupuncture at Siguan point for the treatment of mild cognitive impairment[J]. Chin J Magn Reson Imag, 2024, 15(6): 138-143. DOI: 10.12015/issn.1674-8034.2024.06.021.
[48]
RAE C L, PARKINSON J, BETKA S, et al. Amplified engagement of prefrontal cortex during control of voluntary action in Tourette syndrome[J/OL]. Brain Commun, 2020, 2(2): fcaa199 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/33409490/. DOI: 10.1093/braincomms/fcaa199.
[49]
EDDY C M, CAVANNA A E, HANSEN P C. Empathy and aversion: the neural signature of mentalizing in Tourette syndrome[J]. Psychol Med, 2017, 47(3): 507-517. DOI: 10.1017/S0033291716002725.
[50]
ZAPPAROLI L, TETTAMANTI M, PORTA M, et al. A tug of war: antagonistic effective connectivity patterns over the motor cortex and the severity of motor symptoms in Gilles de la Tourette syndrome[J]. Eur J Neurosci, 2017, 46(6): 2203-2213. DOI: 10.1111/ejn.13658.
[51]
EDDY C M, CAVANNA A E, RICKARDS H E, et al. Temporo-parietal dysfunction in Tourette syndrome: insights from an fMRI study of theory of mind[J/OL]. J Psychiatr Res, 2016, 81: 102-111 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/27424063/. DOI: 10.1016/j.jpsychires.2016.07.002.
[52]
THOMSON A R, PASANTA D, ARICHI T, et al. Neurometabolite differences in autism as assessed with magnetic resonance spectroscopy: a systematic review and meta-analysis[J/OL]. Neurosci Biobehav Rev, 2024, 162: 105728 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov /38796123/. DOI: 10.1016/j.neubiorev.2024.105728.
[53]
LARSH T R, HUDDLESTON D A, HORN P S, et al. From urges to tics in children with Tourette syndrome: associations with supplementary motor area GABA and right motor cortex physiology[J]. Cereb Cortex, 2023, 33(7): 3922-3933. DOI: 10.1093/cercor/bhac316.
[54]
PUTS N A J, HARRIS A D, CROCETTI D, et al. Reduced GABAergic inhibition and abnormal sensory symptoms in children with Tourette syndrome[J]. J Neurophysiol, 2015, 114(2): 808-817. DOI: 10.1152/jn.00060.2015.
[55]
HE J L, MIKKELSEN M, HUDDLESTON D A, et al. Frequency and intensity of premonitory urges-to-tic in Tourette syndrome is associated with supplementary motor area GABA+ levels[J]. Mov Disord, 2022, 37(3): 563-573. DOI: 10.1002/mds.28868.
[56]
KANAAN A S, GERASCH S, GARCÍA-GARCÍA I, et al. Pathological glutamatergic neurotransmission in Gilles de la Tourette syndrome[J/OL]. Brain, 2015, 140: 218-234 [2024-08-20]. https://pubmed.ncbi.nlm.nih.gov/28007998/. DOI: 10.1093/brain/aww285.

PREV Advances in brain MRI research on the correlation between obesity and cognitive decline
NEXT Dynamic functional connectivity MRI analysis in brain network research of the Alzheimer,s disease spectrum
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn