Share:
Share this content in WeChat
X
Review
Dynamic functional connectivity MRI analysis in brain network research of the Alzheimer's disease spectrum
HOU Junbao  SHI Qiye  PENG Xiaohan  XU Ziqi  WANG Yang  CAO Danna 

Cite this article as: HOU J B, SHI Q Y, PENG X H, et al. Dynamic functional connectivity MRI analysis in brain network research of the Alzheimer’s disease spectrum[J]. Chin J Magn Reson Imaging, 2025, 16(1): 181-186. DOI:10.12015/issn.1674-8034.2025.01.029.


[Abstract] Dynamic functional connectivity (dFC) is an advanced method for analyzing functional connectivity in magnetic resonance imaging (MRI), playing a significant role in the study of brain networks in cognitive disorders. Conventional functional connectivity analysis often overlooks the time-varying properties of connectivity, leading to underutilization of imaging data rich in temporal information. Brain networks constructed based on dFC incorporate these temporal features, offering more precise imaging biomarkers for clinical research and serving as novel quantitative indices for predicting disease progression. This paper provides a comprehensive review and discussion of recent domestic and international developments in dFC analysis within the Alzheimer's disease (AD) spectrum. The findings suggest that dFC analysis of regions such as the hippocampus, precuneus, and inferior frontal gyrus holds great potential for deepening our understanding of AD pathogenesis, offering a more reliable imaging-based theoretical framework for explaining the longitudinal progression of AD. Using dFC as a central theme, this review explores current advancements and future directions in the study of the AD spectrum, providing new insights for future neuroimaging research on AD.
[Keywords] dynamic functional connectivity;brain network;functional magnetic resonance imaging;Alzheimer's disease;mild cognitive impairment;subjective cognitive decline

HOU Junbao1   SHI Qiye1   PENG Xiaohan1   XU Ziqi1   WANG Yang2   CAO Danna2*  

1 Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

2 Department of CT & MR, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

Corresponding author: CAO D N, E-mail: hljanna@126.com

Conflicts of interest   None.

Received  2024-10-11
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.029
Cite this article as: HOU J B, SHI Q Y, PENG X H, et al. Dynamic functional connectivity MRI analysis in brain network research of the Alzheimer’s disease spectrum[J]. Chin J Magn Reson Imaging, 2025, 16(1): 181-186. DOI:10.12015/issn.1674-8034.2025.01.029.

[1]
JIANG J W, REN Q W, JIANG S R, et al. Analysis of potential biomarkers for behavioral and psychological symptoms in patients with Alzheimer's disease continuum[J]. Chin J Health Manag, 2023, 17(7): 502-507. DOI: 10.3760/cma.j.cn115624-20230316-00170.
[2]
CHEN Z R, HUANG J B, YANG S L, et al. Role of cholinergic signaling in Alzheimer's disease[J/OL]. Molecules, 2022, 27(6): 1816 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/35335180/. DOI: 10.3390/molecules27061816.
[3]
NASB M, TAO W C, CHEN N. Alzheimer's disease puzzle: delving into pathogenesis hypotheses[J]. Aging Dis, 2024, 15(1): 43-73. DOI: 10.14336/AD.2023.0608.
[4]
2024 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2024, 20(5): 3708-3821. DOI: 10.1002/alz.13809.
[5]
Dementia and Cognitive Impairment Group of Chinese Society of Neurology, Cognitive Disorders Committee of Neurology Branch of Chinese Medical Doctor Association. Chinese expert consensus on brief screening of prodromal Alzheimer's disease (2023)[J]. Chin J Neuromed, 2023, 22(5): 433-444. DOI: 10.3760/cma.j.cn115354-20230330-00191.
[6]
GUSTAVSSON A, NORTON N, FAST T, et al. Global estimates on the number of persons across the Alzheimer's disease continuum[J]. Alzheimers Dement, 2023, 19(2): 658-670. DOI: 10.1002/alz.12694.
[7]
IBRAHIM B, SUPPIAH S, IBRAHIM N, et al. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: a systematic review[J]. Hum Brain Mapp, 2021, 42(9): 2941-2968. DOI: 10.1002/hbm.25369.
[8]
WANG X, HUANG W, SU L, et al. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer's disease[J/OL]. Mol Neurodegener, 2020, 15(1): 55 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/32962744/. DOI: 10.1186/s13024-020-00395-3.
[9]
ALLEN E A, DAMARAJU E, PLIS S M, et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cereb Cortex, 2014, 24(3): 663-676. DOI: 10.1093/cercor/bhs352.
[10]
KOTTARAM A, JOHNSTON L, GANELLA E, et al. Spatio-temporal dynamics of resting-state brain networks improve single-subject prediction of schizophrenia diagnosis[J]. Hum Brain Mapp, 2018, 39(9): 3663-3681. DOI: 10.1002/hbm.24202.
[11]
TORABI M, MITSIS G D, POLINE J B. On the variability of dynamic functional connectivity assessment methods[J/OL]. Gigascience, 2024, 13: giae009 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/38587470/. DOI: 10.1093/gigascience/giae009.
[12]
LAUMANN T O, SNYDER A Z, GRATTON C. Challenges in the measurement and interpretation of dynamic functional connectivity[J/OL]. Imag Neurosci, 2024, 2: 1-19 [2024-09-11]. https://direct.mit.edu/imag/article/doi/10.1162/imag_a_00366/124986/Challenges-in-the-measurement-and-interpretation. DOI: 10.1162/imag_a_00366.
[13]
PARK H J, FRISTON K. Structural and functional brain networks: from connections to cognition[J/OL]. Science, 2013, 342(6158): 1238411 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/24179229/. DOI: 10.1126/science.1238411.
[14]
QU J, TIAN M, ZHU R, et al. Aberrant dynamic functional network connectivity in progressive supranuclear palsy[J/OL]. Neurobiol Dis, 2024, 195: 106493 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/38579913/. DOI: 10.1016/j.nbd.2024.106493.
[15]
ZHANG G, ZHANG Y W, LIU T Y, et al. Analysis of dynamic brain function network connectivity in type 2 diabetes patients based on group independent component analysis[J]. Chin J Magn Reson Imag, 2024, 15(7): 46-50, 69. DOI: 10.12015/issn.1674-8034.2024.07.008.
[16]
LONG Y, LIU X, LIU Z. Temporal stability of the dynamic resting-state functional brain network: current measures, clinical research progress, and future perspectives[J/OL]. Brain Sci, 2023, 13(3): 429 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/36979239/. DOI: 10.3390/brainsci13030429.
[17]
XIE Y, LIU T, AI J, et al. Changes in centrality frequency of the default mode network in individuals with subjective cognitive decline[J/OL]. Front Aging Neurosci, 2019, 11: 118 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/31281248/. DOI: 10.3389/fnagi.2019.00118.
[18]
DONG G Z, YANG L, LI C R, et al. Dynamic network connectivity predicts subjective cognitive decline: the Sino-Longitudinal Cognitive impairment and dementia study[J]. Brain Imaging Behav, 2020, 14(6): 2692-2707. DOI: 10.1007/s11682-019-00220-6.
[19]
CHEN Z H, CHEN K L, LI Y X, et al. Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI[J/OL]. Hum Brain Mapp, 2024, 45(1): e26529 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/37991144/. DOI: 10.1002/hbm.26529.
[20]
CALHOUN V D, DE LACY N. Ten key observations on the analysis of resting-state functional MR imaging data using independent component analysis[J]. Neuroimaging Clin N Am, 2017, 27(4): 561-579. DOI: 10.1016/j.nic.2017.06.012.
[21]
QIAO J P, WANG R, LIU H J, et al. Brain disorder prediction with dynamic multivariate spatio-temporal features: Application to Alzheimer's disease and autism spectrum disorder[J/OL]. Front Aging Neurosci, 2022, 14: 912895 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/36110425/. DOI: 10.3389/fnagi.2022.912895.
[22]
JESSEN F, AMARIGLIO R E, BUCKLEY R F, et al. The characterisation of subjective cognitive decline[J]. Lancet Neurol, 2020, 19(3): 271-278. DOI: 10.1016/S1474-4422(19)30368-0.
[23]
ULBL J, RAKUSA M. The importance of subjective cognitive decline recognition and the potential of molecular and neurophysiological biomarkers-a systematic review[J/OL]. Int J Mol Sci, 2023, 24(12): 10158 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/37373304/. DOI: 10.3390/ijms241210158.
[24]
YU X F, SHAO K, WAN K, et al. Progress in blood biomarkers of subjective cognitive decline in preclinical Alzheimer's disease[J]. Chin Med J, 2023, 136(5): 505-521. DOI: 10.1097/CM9.0000000000002566.
[25]
CHEN Q, LU J M, ZHANG X, et al. Alterations in dynamic functional connectivity in individuals with subjective cognitive decline[J/OL]. Front Aging Neurosci, 2021, 13: 646017 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/33613274/. DOI: 10.3389/fnagi.2021.646017.
[26]
JIN X, XU B, XU R, et al. The influence of childhood emotional neglect experience on brain dynamic functional connectivity in young adults[J/OL]. Eur J Psychotraumatol, 2023, 14(2): 2258723 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/37736668/. DOI: 10.1080/20008066.2023.2258723.
[27]
MARUSAK H A, CALHOUN V D, BROWN S, et al. Dynamic functional connectivity of neurocognitive networks in children[J]. Hum Brain Mapp, 2017, 38(1): 97-108. DOI: 10.1002/hbm.23346.
[28]
TIAN L X, LI Q Z, WANG C, et al. Changes in dynamic functional connections with aging[J/OL]. Neuroimage, 2018, 172: 31-39 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/29414496/. DOI: 10.1016/j.neuroimage.2018.01.040.
[29]
YANG Y W, ZHA X Y, ZHANG X D, et al. Dynamics and concordance abnormalities among indices of intrinsic brain activity in individuals with subjective cognitive decline: a temporal dynamics resting-state functional magnetic resonance imaging analysis[J/OL]. Front Aging Neurosci, 2021, 12: 584863 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/33568986/. DOI: 10.3389/fnagi.2020.584863.
[30]
WANG Q, CHEN B, ZHONG X M, et al. Static and dynamic functional connectivity variability of the anterior-posterior hippocampus with subjective cognitive decline[J/OL]. Alzheimers Res Ther, 2022, 14(1): 122 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/36057586/. DOI: 10.1186/s13195-022-01066-9.
[31]
LIANG L, ZHAO L, WEI Y, et al. Structural and functional hippocampal changes in subjective cognitive decline from the community[J/OL]. Front Aging Neurosci, 2020, 12: 64 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/32256336/. DOI: 10.3389/fnagi.2020.00064.
[32]
VIVIANO R P, DAMOISEAUX J S. Longitudinal change in hippocampal and dorsal anterior insulae functional connectivity in subjective cognitive decline[J/OL]. Alzheimers Res Ther, 2021, 13(1): 108 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/34059109/. DOI: 10.1186/s13195-021-00847-y.
[33]
SONG Z, JIANG Z, ZHANG Z, et al. Evolving brain network dynamics in early childhood: Insights from modular graph metrics[J/OL]. Neuroimage, 2024, 297: 120740 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/39047590/. DOI: 10.1016/j.neuroimage.2024.120740.
[34]
FEDOTA J R, ROSS T J, CASTILLO J, et al. Time-varying functional connectivity decreases as a function of acute nicotine abstinence[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2021, 6(4): 459-469. DOI: 10.1016/j.bpsc.2020.10.004.
[35]
CHEN Z, ZHANG R, HUO H, et al. Functional connectome of human cerebellum[J/OL]. Neuroimage, 2022, 251: 119015 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/35189360/. DOI: 10.1016/j.neuroimage.2022.119015.
[36]
Chinese Society of Dementia and Cognitive Impairment. Chinese expert consensus on the diagnosis and treatment of mild cognitive impairment due to Alzheimer's disease 2024[J]. Chin J Neurol, 2024, 57(7): 715-737. DOI: 10.3760/cma.j.cn113694-20240320-00172.
[37]
FENG Q, WANG L Y, TANG X, et al. Static and dynamic functional connectivity combined with the triple network model in amnestic mild cognitive impairment and Alzheimer's disease[J/OL]. Front Neurol, 2023, 14: 1284227 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/38107647/. DOI: 10.3389/fneur.2023.1284227.
[38]
XUE C, QI W Z, YUAN Q Q, et al. Disrupted dynamic functional connectivity in distinguishing subjective cognitive decline and amnestic mild cognitive impairment based on the triple-network model[J/OL]. Front Aging Neurosci, 2021, 13: 711009 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/34603006/. DOI: 10.3389/fnagi.2021.711009.
[39]
PENALBA-SÁNCHEZ L, OLIVEIRA-SILVA P, SUMICH A L, et al. Increased functional connectivity patterns in mild Alzheimer's disease: a rsfMRI study[J/OL]. Front Aging Neurosci, 2022, 14: 1037347 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/36698861/. DOI: 10.3389/fnagi.2022.1037347.
[40]
ZHAO C, HUANG W J, FENG F, et al. Abnormal characterization of dynamic functional connectivity in Alzheimer's disease[J]. Neural Regen Res, 2022, 17(9): 2014-2021. DOI: 10.4103/1673-5374.332161.
[41]
JING R X, CHEN P D, WEI Y B, et al. Altered large-scale dynamic connectivity patterns in Alzheimer's disease and mild cognitive impairment patients: a machine learning study[J]. Hum Brain Mapp, 2023, 44(9): 3467-3480. DOI: 10.1002/hbm.26291.
[42]
KAM T E, ZHANG H, JIAO Z C, et al. Deep learning of static and dynamic brain functional networks for early MCI detection[J]. IEEE Trans Med Imaging, 2020, 39(2): 478-487. DOI: 10.1109/TMI.2019.2928790.
[43]
AN X W, ZHOU Y T, DI Y, et al. A novel method to identify mild cognitive impairment using dynamic spatio-temporal graph neural network[J/OL]. IEEE Trans Neural Syst Rehabil Eng, 2024, 32: 3328-3337 [2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/39190512/. DOI: 10.1109/TNSRE.2024.3450443.
[44]
JACK C R, SCOTT ANDREWS J, BEACH T G, et al. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup[J]. Alzheimers Dement, 2024, 20(8): 5143-5169. DOI: 10.1002/alz.13859.
[45]
DE VOS F, KOINI M, SCHOUTEN T M, et al. A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease[J/OL]. Neuroimage, 2018, 167: 62-72 [2024-09-29]. https://pubmed.ncbi.nlm.nih.gov/29155080/. DOI: 10.1016/j.neuroimage.2017.11.025.
[46]
RUBIDO N, RIEDEL G, VUKSANOVIĆ V. Genetic basis of anatomical asymmetry and aberrant dynamic functional networks in Alzheimer's disease[J/OL]. Brain Commun, 2024, 6(1): fcad320 [2024-09-29]. https://pubmed.ncbi.nlm.nih.gov/38173803/. DOI: 10.1093/braincomms/fcad320.
[47]
KING G, VEROS K M, MACLAREN D A A, et al. Human wildtype tau expression in cholinergic pedunculopontine tegmental neurons is sufficient to produce PSP-like behavioural deficits and neuropathology[J]. Eur J Neurosci, 2021, 54(10): 7688-7709. DOI: 10.1111/ejn.15496.
[48]
WATANABE H, BAGARINAO E, YOKOI T, et al. Tau accumulation and network breakdown in Alzheimer's disease[J/OL]. Adv Exp Med Biol, 2019, 1184: 231-240 [2024-09-29]. https://pubmed.ncbi.nlm.nih.gov/32096042/. DOI: 10.1007/978-981-32-9358-8_19.
[49]
RUWANPATHIRANA G P, WILLIAMS R C, MASTERS C L, et al. Mapping the association between tau-PET and Aβ-amyloid-PET using deep learning[J/OL]. Sci Rep, 2022, 12(1): 14797 [2024-09-29]. https://pubmed.ncbi.nlm.nih.gov/36042256/. DOI: 10.1038/s41598-022-18963-6.
[50]
NOVÉN M, OLSSON H, HELMS G, et al. Cortical and white matter correlates of language-learning aptitudes[J]. Hum Brain Mapp, 2021, 42(15): 5037-5050. DOI: 10.1002/hbm.25598.
[51]
ZHANG X Y, ZENG Q Z, WANG Y B, et al. Alteration of functional connectivity network in population of objectively-defined subtle cognitive decline[J/OL]. Brain Commun, 2024, 6(1): fcae033 [2024-09-29]. https://pubmed.ncbi.nlm.nih.gov/38425749/. DOI: 10.1093/braincomms/fcae033.
[52]
DADARIO N B, SUGHRUE M E. The functional role of the precuneus[J]. Brain, 2023, 146(9): 3598-3607. DOI: 10.1093/brain/awad181.
[53]
GU Y, LIN Y, HUANG L L, et al. Abnormal dynamic functional connectivity in Alzheimer's disease[J]. CNS Neurosci Ther, 2020, 26(9): 962-971. DOI: 10.1111/cns.13387.
[54]
CANAL-GARCIA A, VERÉB D, MIJALKOV M, et al. Dynamic multilayer functional connectivity detects preclinical and clinical Alzheimer's disease[J/OL]. Cereb Cortex, 2024, 34(2): bhad542 [2024-09-29]. https://pubmed.ncbi.nlm.nih.gov/38212285/. DOI: 10.1093/cercor/bhad542.
[55]
CUI X H, DING C L, WEI J, et al. Analysis of dynamic network reconfiguration in adults with attention-deficit/hyperactivity disorder based multilayer network[J]. Cereb Cortex, 2021, 31(11): 4945-4957. DOI: 10.1093/cercor/bhab133.
[56]
WEI J. Spatial dynamic analysis of brain network based on dynamic model and its application in Alzheimer's disease[D]. Taiyuan: Taiyuan University of Technology, 2023. DOI: 10.27352/d.cnki.gylgu.2023.002336.
[57]
LI S, ZHANG Z J, JIANG A H, et al. Repetitive transcranial magnetic stimulation reshaped the dynamic reconfiguration of the executive and reward networks in individuals with tobacco use disorder[J/OL]. J Affect Disord, 2024, 365: 427-436 [2024-09-29]. https://pubmed.ncbi.nlm.nih.gov/39197549/. DOI: 10.1016/j.jad.2024.08.120.
[58]
CÓRDOVA-PALOMERA A, KAUFMANN T, PERSSON K, et al. Disrupted global metastability and static and dynamic brain connectivity across individuals in the Alzheimer's disease continuum[J/OL]. Sci Rep, 2017, 7: 40268 [2024-09-29]. https://pubmed.ncbi.nlm.nih.gov/28074926/. DOI: 10.1038/srep40268.

PREV Recent progress and prospect of multimodal magnetic resonance imaging in Gilles de la Tourette syndrome
NEXT Research progress of multiparameter MRI in default mode network damage in patients with obstructive sleep apnea
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn